Ramírez-Palacios Carlos, Marrink Siewert J
Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
QRB Discov. 2022 Dec 12;4:e1. doi: 10.1017/qrd.2022.22. eCollection 2023.
We previously presented a computational protocol to predict the enzymatic (enantio)selectivity of an ω-transaminase towards a set of ligands (Ramírez-Palacios (2021) 61(11), 5569-5580) by counting the number of binding poses present in molecular dynamics (MD) simulations that met a defined set of geometric criteria. The geometric criteria consisted of a hand-crafted set of distances, angles and dihedrals deemed to be important for the enzymatic reaction to take place. In this work, the MD trajectories are reanalysed using a deep-learning approach to predict the enantiopreference of the enzyme without the need for hand-crafted criteria. We show that a convolutional neural network is capable of classifying the trajectories as belonging to the 'reactive' or 'non-reactive' enantiomer (binary classification) with a good accuracy (>0.90). The new method reduces the computational cost of the methodology, because it does not necessitate the sampling approach from the previous work. We also show that analysing how neural networks reach specific decisions can aid hand-crafted approaches (e.g. definition of near-attack conformations, or binding poses).
我们之前提出了一种计算方案,通过计算分子动力学(MD)模拟中满足一组定义几何标准的结合构象数量,来预测ω-转氨酶对一组配体的酶促(对映体)选择性(Ramírez-Palacios (2021) 61(11), 5569 - 5580)。几何标准由一组手工设定的距离、角度和二面角组成,这些被认为对酶促反应的发生很重要。在这项工作中,使用深度学习方法重新分析MD轨迹,以预测酶的对映体偏好,而无需手工设定标准。我们表明,卷积神经网络能够以较高的准确率(>0.90)将轨迹分类为属于“反应性”或“非反应性”对映体(二元分类)。新方法降低了该方法的计算成本,因为它不需要先前工作中的采样方法。我们还表明,分析神经网络如何做出特定决策有助于手工方法(例如定义近攻击构象或结合构象)。