Suppr超能文献

相似文献

1
Conditional and tissue-specific approaches to dissect essential mechanisms in plant development.
Curr Opin Plant Biol. 2022 Feb;65:102119. doi: 10.1016/j.pbi.2021.102119. Epub 2021 Oct 13.
2
Genome editing using CRISPR, CAST, and Fanzor systems.
Mol Cells. 2024 Jul;47(7):100086. doi: 10.1016/j.mocell.2024.100086. Epub 2024 Jun 21.
3
Genome editing for plant research and crop improvement.
J Integr Plant Biol. 2021 Jan;63(1):3-33. doi: 10.1111/jipb.13063.
4
CRISPR-P 2.0: An Improved CRISPR-Cas9 Tool for Genome Editing in Plants.
Mol Plant. 2017 Mar 6;10(3):530-532. doi: 10.1016/j.molp.2017.01.003. Epub 2017 Jan 13.
5
PrimeRoot for targeted large DNA insertion in plants.
Trends Plant Sci. 2023 Aug;28(8):870-872. doi: 10.1016/j.tplants.2023.05.002. Epub 2023 May 24.
6
CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants.
Curr Opin Plant Biol. 2021 Apr;60:101980. doi: 10.1016/j.pbi.2020.101980. Epub 2021 Jan 2.
7
8
Targeted Base Editing Systems Are Available for Plants.
Trends Plant Sci. 2018 Nov;23(11):955-957. doi: 10.1016/j.tplants.2018.08.011. Epub 2018 Sep 14.
9
CRISPR/Cas: A powerful tool for gene function study and crop improvement.
J Adv Res. 2020 Oct 21;29:207-221. doi: 10.1016/j.jare.2020.10.003. eCollection 2021 Mar.
10
CRISPR-Based Technologies: Impact of RNA-Targeting Systems.
Mol Cell. 2018 Nov 1;72(3):404-412. doi: 10.1016/j.molcel.2018.09.018.

引用本文的文献

1
Expanding the application of anti-CRISPR proteins in plants for tunable genome editing.
Plant Physiol. 2023 May 2;192(1):60-64. doi: 10.1093/plphys/kiad076.

本文引用的文献

1
CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants.
Nat Plants. 2021 Jul;7(7):942-953. doi: 10.1038/s41477-021-00953-7. Epub 2021 Jun 24.
2
CRISPR-based targeting of DNA methylation in by a bacterial CG-specific DNA methyltransferase.
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2125016118.
3
Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes.
Nat Methods. 2021 May;18(5):499-506. doi: 10.1038/s41592-021-01124-4. Epub 2021 May 3.
4
Conditional destabilization of the TPLATE complex impairs endocytic internalization.
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.2023456118.
5
Nanobody-Dependent Delocalization of Endocytic Machinery in Root Cells Dampens Their Internalization Capacity.
Front Plant Sci. 2021 Mar 19;12:538580. doi: 10.3389/fpls.2021.538580. eCollection 2021.
6
Cellular Control of Protein Turnover via the Modification of the Amino Terminus.
Int J Mol Sci. 2021 Mar 29;22(7):3545. doi: 10.3390/ijms22073545.
7
Visualizing protein-protein interactions in plants by rapamycin-dependent delocalization.
Plant Cell. 2021 May 31;33(4):1101-1117. doi: 10.1093/plcell/koab004.
8
Cre-Controlled CRISPR mutagenesis provides fast and easy conditional gene inactivation in zebrafish.
Nat Commun. 2021 Feb 18;12(1):1125. doi: 10.1038/s41467-021-21427-6.
9
Engineered degradation of EYFP-tagged CENH3 via the 26S proteasome pathway in plants.
PLoS One. 2021 Feb 12;16(2):e0247015. doi: 10.1371/journal.pone.0247015. eCollection 2021.
10
Efficient simultaneous mutagenesis of multiple genes in specific plant tissues by multiplex CRISPR.
Plant Biotechnol J. 2021 Apr;19(4):651-653. doi: 10.1111/pbi.13525. Epub 2021 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验