Suppr超能文献

条件性和组织特异性方法解析植物发育中的重要机制。

Conditional and tissue-specific approaches to dissect essential mechanisms in plant development.

机构信息

Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, 9052, Ghent, Belgium.

Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, 9052, Ghent, Belgium.

出版信息

Curr Opin Plant Biol. 2022 Feb;65:102119. doi: 10.1016/j.pbi.2021.102119. Epub 2021 Oct 13.

Abstract

Reverse genetics approaches are routinely used to investigate gene function. However, mutations, especially in critical genes, can lead to pleiotropic effects as severe as lethality, thus limiting functional studies in specific contexts. Approaches that allow for modifications of genes or gene products in a specific spatial or temporal setting can overcome these limitations. The advent of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technologies has not only revolutionized targeted genome modification in plants but also enabled new possibilities for inducible and tissue-specific manipulation of gene functions at the DNA and RNA levels. In addition, novel approaches for the direct manipulation of target proteins have been introduced in plant systems. Here, we review the current development in tissue-specific and conditional manipulation approaches at the DNA, RNA, and protein levels.

摘要

反向遗传学方法通常用于研究基因功能。然而,突变,尤其是在关键基因中,可能导致严重的多效性效应,如致死性,从而限制了特定背景下的功能研究。允许在特定空间或时间设置中修改基因或基因产物的方法可以克服这些限制。CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)技术的出现不仅彻底改变了植物中的靶向基因组修饰,而且还为在 DNA 和 RNA 水平上对基因功能进行诱导和组织特异性操作提供了新的可能性。此外,还在植物系统中引入了针对靶蛋白的直接操作的新方法。在这里,我们回顾了在 DNA、RNA 和蛋白质水平上进行组织特异性和条件性操作方法的最新进展。

相似文献

1
Conditional and tissue-specific approaches to dissect essential mechanisms in plant development.
Curr Opin Plant Biol. 2022 Feb;65:102119. doi: 10.1016/j.pbi.2021.102119. Epub 2021 Oct 13.
2
Genome editing using CRISPR, CAST, and Fanzor systems.
Mol Cells. 2024 Jul;47(7):100086. doi: 10.1016/j.mocell.2024.100086. Epub 2024 Jun 21.
3
Genome editing for plant research and crop improvement.
J Integr Plant Biol. 2021 Jan;63(1):3-33. doi: 10.1111/jipb.13063.
4
CRISPR-P 2.0: An Improved CRISPR-Cas9 Tool for Genome Editing in Plants.
Mol Plant. 2017 Mar 6;10(3):530-532. doi: 10.1016/j.molp.2017.01.003. Epub 2017 Jan 13.
5
PrimeRoot for targeted large DNA insertion in plants.
Trends Plant Sci. 2023 Aug;28(8):870-872. doi: 10.1016/j.tplants.2023.05.002. Epub 2023 May 24.
6
CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants.
Curr Opin Plant Biol. 2021 Apr;60:101980. doi: 10.1016/j.pbi.2020.101980. Epub 2021 Jan 2.
7
8
Targeted Base Editing Systems Are Available for Plants.
Trends Plant Sci. 2018 Nov;23(11):955-957. doi: 10.1016/j.tplants.2018.08.011. Epub 2018 Sep 14.
9
CRISPR/Cas: A powerful tool for gene function study and crop improvement.
J Adv Res. 2020 Oct 21;29:207-221. doi: 10.1016/j.jare.2020.10.003. eCollection 2021 Mar.
10
CRISPR-Based Technologies: Impact of RNA-Targeting Systems.
Mol Cell. 2018 Nov 1;72(3):404-412. doi: 10.1016/j.molcel.2018.09.018.

引用本文的文献

1
Expanding the application of anti-CRISPR proteins in plants for tunable genome editing.
Plant Physiol. 2023 May 2;192(1):60-64. doi: 10.1093/plphys/kiad076.

本文引用的文献

1
CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants.
Nat Plants. 2021 Jul;7(7):942-953. doi: 10.1038/s41477-021-00953-7. Epub 2021 Jun 24.
2
CRISPR-based targeting of DNA methylation in by a bacterial CG-specific DNA methyltransferase.
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2125016118.
3
Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes.
Nat Methods. 2021 May;18(5):499-506. doi: 10.1038/s41592-021-01124-4. Epub 2021 May 3.
4
Conditional destabilization of the TPLATE complex impairs endocytic internalization.
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.2023456118.
5
Nanobody-Dependent Delocalization of Endocytic Machinery in Root Cells Dampens Their Internalization Capacity.
Front Plant Sci. 2021 Mar 19;12:538580. doi: 10.3389/fpls.2021.538580. eCollection 2021.
6
Cellular Control of Protein Turnover via the Modification of the Amino Terminus.
Int J Mol Sci. 2021 Mar 29;22(7):3545. doi: 10.3390/ijms22073545.
7
Visualizing protein-protein interactions in plants by rapamycin-dependent delocalization.
Plant Cell. 2021 May 31;33(4):1101-1117. doi: 10.1093/plcell/koab004.
8
Cre-Controlled CRISPR mutagenesis provides fast and easy conditional gene inactivation in zebrafish.
Nat Commun. 2021 Feb 18;12(1):1125. doi: 10.1038/s41467-021-21427-6.
9
Engineered degradation of EYFP-tagged CENH3 via the 26S proteasome pathway in plants.
PLoS One. 2021 Feb 12;16(2):e0247015. doi: 10.1371/journal.pone.0247015. eCollection 2021.
10
Efficient simultaneous mutagenesis of multiple genes in specific plant tissues by multiplex CRISPR.
Plant Biotechnol J. 2021 Apr;19(4):651-653. doi: 10.1111/pbi.13525. Epub 2021 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验