基于术前 CT 影像组学的nomogram 模型预测孤立性肺结节患者病理侵袭性的构建与验证:一项机器学习方法、多中心、诊断性研究。

Development and validation of a preoperative CT-based radiomic nomogram to predict pathology invasiveness in patients with a solitary pulmonary nodule: a machine learning approach, multicenter, diagnostic study.

机构信息

Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China.

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.

出版信息

Eur Radiol. 2022 Mar;32(3):1983-1996. doi: 10.1007/s00330-021-08268-z. Epub 2021 Oct 16.

Abstract

OBJECTIVES

To develop and validate a preoperative CT-based nomogram combined with radiomic and clinical-radiological signatures to distinguish preinvasive lesions from pulmonary invasive lesions.

METHODS

This was a retrospective, diagnostic study conducted from August 1, 2018, to May 1, 2020, at three centers. Patients with a solitary pulmonary nodule were enrolled in the GDPH center and were divided into two groups (7:3) randomly: development (n = 149) and internal validation (n = 54). The SYSMH center and the ZSLC Center formed an external validation cohort of 170 patients. The least absolute shrinkage and selection operator (LASSO) algorithm and logistic regression analysis were used to feature signatures and transform them into models.

RESULTS

The study comprised 373 individuals from three independent centers (female: 225/373, 60.3%; median [IQR] age, 57.0 [48.0-65.0] years). The AUCs for the combined radiomic signature selected from the nodular area and the perinodular area were 0.93, 0.91, and 0.90 in the three cohorts. The nomogram combining the clinical and combined radiomic signatures could accurately predict interstitial invasion in patients with a solitary pulmonary nodule (AUC, 0.94, 0.90, 0.92) in the three cohorts, respectively. The radiomic nomogram outperformed any clinical or radiomic signature in terms of clinical predictive abilities, according to a decision curve analysis and the Akaike information criteria.

CONCLUSIONS

This study demonstrated that a nomogram constructed by identified clinical-radiological signatures and combined radiomic signatures has the potential to precisely predict pathology invasiveness.

KEY POINTS

• The radiomic signature from the perinodular area has the potential to predict pathology invasiveness of the solitary pulmonary nodule. • The new radiomic nomogram was useful in clinical decision-making associated with personalized surgical intervention and therapeutic regimen selection in patients with early-stage non-small-cell lung cancer.

摘要

目的

开发并验证一种基于术前 CT 的列线图,结合放射组学和临床放射学特征,以区分肺浸润前病变与肺浸润性病变。

方法

这是一项回顾性诊断研究,于 2018 年 8 月 1 日至 2020 年 5 月 1 日在三个中心进行。招募了单个肺结节患者,并将其随机分为两组(7:3):发展组(n=149)和内部验证组(n=54)。SYSMH 中心和 ZSLC 中心组成了 170 名患者的外部验证队列。最小绝对收缩和选择算子(LASSO)算法和逻辑回归分析用于提取特征并将其转化为模型。

结果

该研究共纳入了来自三个独立中心的 373 名个体(女性:225/373,60.3%;中位数[IQR]年龄,57.0[48.0-65.0]岁)。在三个队列中,从结节区和结节周围区选择的联合放射组学特征的 AUC 分别为 0.93、0.91 和 0.90。联合临床和联合放射组学特征的列线图可准确预测单个肺结节患者的间质浸润(AUC 分别为 0.94、0.90 和 0.92)。根据决策曲线分析和 Akaike 信息准则,与任何临床或放射组学特征相比,放射组学列线图在临床预测能力方面表现更好。

结论

本研究表明,由识别的临床放射学特征和联合放射组学特征构建的列线图具有准确预测病理侵袭性的潜力。

关键点

  1. 结节周围区的放射组学特征有可能预测孤立性肺结节的病理侵袭性。

  2. 新的放射组学列线图有助于在与早期非小细胞肺癌患者的个性化手术干预和治疗方案选择相关的临床决策中发挥作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff32/8831242/b78637726489/330_2021_8268_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索