Department of Theoretical Neuroscience, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany.
Clinic for Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany.
Hum Brain Mapp. 2022 Feb 1;43(2):681-699. doi: 10.1002/hbm.25679. Epub 2021 Oct 16.
Emerging studies corroborate the importance of neuroimaging biomarkers and machine learning to improve diagnostic classification of amyotrophic lateral sclerosis (ALS). While most studies focus on structural data, recent studies assessing functional connectivity between brain regions by linear methods highlight the role of brain function. These studies have yet to be combined with brain structure and nonlinear functional features. We investigate the role of linear and nonlinear functional brain features, and the benefit of combining brain structure and function for ALS classification. ALS patients (N = 97) and healthy controls (N = 59) underwent structural and functional resting state magnetic resonance imaging. Based on key hubs of resting state networks, we defined three feature sets comprising brain volume, resting state functional connectivity (rsFC), as well as (nonlinear) resting state dynamics assessed via recurrent neural networks. Unimodal and multimodal random forest classifiers were built to classify ALS. Out-of-sample prediction errors were assessed via five-fold cross-validation. Unimodal classifiers achieved a classification accuracy of 56.35-61.66%. Multimodal classifiers outperformed unimodal classifiers achieving accuracies of 62.85-66.82%. Evaluating the ranking of individual features' importance scores across all classifiers revealed that rsFC features were most dominant in classification. While univariate analyses revealed reduced rsFC in ALS patients, functional features more generally indicated deficits in information integration across resting state brain networks in ALS. The present work undermines that combining brain structure and function provides an additional benefit to diagnostic classification, as indicated by multimodal classifiers, while emphasizing the importance of capturing both linear and nonlinear functional brain properties to identify discriminative biomarkers of ALS.
新兴研究证实了神经影像学生物标志物和机器学习在提高肌萎缩侧索硬化症(ALS)的诊断分类中的重要性。虽然大多数研究都集中在结构数据上,但最近评估脑区之间功能连接的线性方法的研究强调了脑功能的作用。这些研究尚未与脑结构和非线性功能特征相结合。我们研究了线性和非线性功能脑特征的作用,以及结合脑结构和功能对 ALS 分类的益处。97 名 ALS 患者和 59 名健康对照接受了结构和功能静息态磁共振成像检查。基于静息态网络的关键枢纽,我们定义了三个特征集,包括脑容量、静息态功能连接(rsFC),以及通过递归神经网络评估的(非线性)静息态动力学。构建了单模态和多模态随机森林分类器来对 ALS 进行分类。通过五折交叉验证评估了样本外预测误差。单模态分类器的分类准确率为 56.35-61.66%。多模态分类器优于单模态分类器,准确率为 62.85-66.82%。评估所有分类器中个体特征重要性得分的排序发现,rsFC 特征在分类中最为突出。虽然单变量分析显示 ALS 患者的 rsFC 减少,但功能特征更普遍地表明 ALS 患者静息态大脑网络中的信息整合存在缺陷。本研究表明,结合脑结构和功能为诊断分类提供了额外的益处,这表明多模态分类器的重要性,同时强调了捕捉线性和非线性功能脑特性以识别 ALS 有区别的生物标志物的重要性。