Department of Food Science and Technology, The Ohio State University, Parker Food Science and Technology Building, Columbus 43210.
Department of Food Science and Technology, The Ohio State University, Parker Food Science and Technology Building, Columbus 43210.
J Dairy Sci. 2022 Jan;105(1):22-31. doi: 10.3168/jds.2021-20902. Epub 2021 Oct 14.
The dairy industry struggles to maintain consumer attention in the midst of declining fluid milk sales. Current trends create an opportunity to incorporate plant-based proteins with milk to produce a high-protein, multisourced, functional food product. Plant-based proteins, such as those in peas, can be challenging to use in food systems because of their low solubility and undesirable off-flavors. Casein micelles have unique structural properties that allow for interactions with small ions and larger macromolecules that aid in their noteworthy ability as a nanovehicle for hydrophobic compounds. The objective of this study was to use the inherent structure of the casein micelle along with common dairy processing equipment to create a stable colloidal dispersion of casein micelles with pea protein to improve its solubility in aqueous solutions. We created 3 blends with varying ratios of casein-to-pea protein (90:10, 80:20, 50:50). We subjected the mixtures to 3 cycles of homogenization using a bench-top GEA 2-stage homogenizer at 27,580 kPa maintained at 4°C, followed by pasteurization at 63°C for 30 min. The resulting blends were homogeneous liquids with increased stability due to the lack of protein precipitation. Further protein analysis by HPLC and AA sequencing revealed that vicilin, an insoluble storage protein, was the main pea protein incorporated within the casein micelle structure. These results supported our hypothesis that low-temperature homogenization can successfully be used to create a colloidal dispersion with increased stability, in which insoluble plant-based proteins may be incorporated with casein micelles in an aqueous solution. Additionally, 3-dimensional microscope images of the blends indicated a noticeable difference between the surface roughness upon addition of pea protein to the casein micelle matrix. This research highlights a promising application for other plant-based proteins to be used within the dairy industry to help drive future product innovation while also meeting current processing conditions and consumer demands.
乳制品行业在液态奶销售下滑的情况下,努力维持消费者的关注度。当前的趋势为将植物性蛋白质与牛奶结合起来创造了机会,以生产高蛋白、多来源、功能性的食品。豌豆等植物性蛋白质由于其低溶解度和不良的异味,在食品系统中使用具有挑战性。酪蛋白胶束具有独特的结构特性,允许与小离子和较大的大分子相互作用,这有助于其作为疏水性化合物的纳米载体的显著能力。本研究的目的是利用酪蛋白胶束的固有结构和常见的乳制品加工设备,创建一种稳定的酪蛋白胶束与豌豆蛋白的胶体分散体,以提高其在水溶液中的溶解度。我们创建了 3 种不同比例的酪蛋白-豌豆蛋白混合物(90:10、80:20、50:50)。我们使用台式 GEA 2 级均质机在 4°C 下以 27,580 kPa 的压力对混合物进行了 3 个循环的均质化处理,然后在 63°C 下进行 30 分钟的巴氏杀菌。所得混合物为均匀的液体,由于缺乏蛋白质沉淀,稳定性增加。通过 HPLC 和氨基酸测序的进一步蛋白质分析表明,豆球蛋白,一种不溶性储存蛋白,是主要的豌豆蛋白掺入到酪蛋白胶束结构中。这些结果支持了我们的假设,即低温均质化可以成功地用于创建具有增加稳定性的胶体分散体,其中不溶性植物性蛋白质可以与酪蛋白胶束在水溶液中结合。此外,混合物的 3 维显微镜图像表明,在向酪蛋白胶束基质中添加豌豆蛋白后,表面粗糙度有明显差异。这项研究突出了其他植物性蛋白质在乳制品行业中的应用前景,有助于推动未来的产品创新,同时满足当前的加工条件和消费者需求。