Suppr超能文献

光学结肠镜图像中息肉的计算机辅助检测

Computer-Aided Detection of Polyps in Optical Colonoscopy Images.

作者信息

Nadeem Saad, Kaufman Arie

机构信息

Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2016 Feb-Mar;9785. doi: 10.1117/12.2216996. Epub 2016 Mar 24.

Abstract

We present a computer-aided detection algorithm for polyps in optical colonoscopy images. Polyps are the precursors to colon cancer. In the US alone, more than 14 million optical colonoscopies are performed every year, mostly to screen for polyps. Optical colonoscopy has been shown to have an approximately 25% polyp miss rate due to the convoluted folds and bends present in the colon. In this work, we present an automatic detection algorithm to detect these polyps in the optical colonoscopy images. We use a machine learning algorithm to infer a depth map for a given optical colonoscopy image and then use a detailed pre-built polyp profile to detect and delineate the boundaries of polyps in this given image. We have achieved the best recall of 84.0% and the best specificity value of 83.4%.

摘要

我们提出了一种用于光学结肠镜图像中息肉的计算机辅助检测算法。息肉是结肠癌的前身。仅在美国,每年就进行超过1400万次光学结肠镜检查,主要是为了筛查息肉。由于结肠中存在的复杂褶皱和弯曲,光学结肠镜检查已显示出约25%的息肉漏检率。在这项工作中,我们提出了一种自动检测算法,用于在光学结肠镜图像中检测这些息肉。我们使用机器学习算法为给定的光学结肠镜图像推断深度图,然后使用详细的预建息肉轮廓来检测和勾勒该给定图像中息肉的边界。我们实现了84.0%的最佳召回率和83.4%的最佳特异性值。

相似文献

1
Computer-Aided Detection of Polyps in Optical Colonoscopy Images.光学结肠镜图像中息肉的计算机辅助检测
Proc SPIE Int Soc Opt Eng. 2016 Feb-Mar;9785. doi: 10.1117/12.2216996. Epub 2016 Mar 24.

引用本文的文献

1
CLTS-GAN: Color-Lighting-Texture-Specular Reflection Augmentation for Colonoscopy.CLTS-GAN:用于结肠镜检查的颜色-光照-纹理-镜面反射增强技术
Med Image Comput Comput Assist Interv. 2022 Sep;2022:519-529. doi: 10.1007/978-3-031-16449-1_49. Epub 2022 Sep 17.
2
FoldIt: Haustral Folds Detection and Segmentation in Colonoscopy Videos.FoldIt:结肠镜检查视频中的袋状皱襞检测与分割
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12903:221-230. doi: 10.1007/978-3-030-87199-4_21. Epub 2021 Sep 21.
5
Augmenting Colonoscopy using Extended and Directional CycleGAN for Lossy Image Translation.使用扩展和定向循环生成对抗网络进行有损图像转换以增强结肠镜检查
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2020 Jun;2020:4695-4704. doi: 10.1109/cvpr42600.2020.00475. Epub 2020 Aug 5.

本文引用的文献

1
Depth Transfer: Depth Extraction from Video Using Non-Parametric Sampling.深度迁移:使用非参数采样从视频中提取深度。
IEEE Trans Pattern Anal Mach Intell. 2014 Nov;36(11):2144-58. doi: 10.1109/TPAMI.2014.2316835.
2
3D Reconstruction of virtual colon structures from colonoscopy images.从结肠镜图像中对虚拟结肠结构进行三维重建。
Comput Med Imaging Graph. 2014 Jan;38(1):22-33. doi: 10.1016/j.compmedimag.2013.10.005. Epub 2013 Oct 27.
3
SIFT flow: dense correspondence across scenes and its applications.SIFT 流:跨越场景的密集对应及其应用。
IEEE Trans Pattern Anal Mach Intell. 2011 May;33(5):978-94. doi: 10.1109/TPAMI.2010.147.
4
Lines of curvature for polyp detection in virtual colonoscopy.虚拟结肠镜检查中用于息肉检测的曲率线
IEEE Trans Vis Comput Graph. 2006 Sep-Oct;12(5):885-92. doi: 10.1109/TVCG.2006.158.
5
A pipeline for computer aided polyp detection.一种用于计算机辅助息肉检测的流程。
IEEE Trans Vis Comput Graph. 2006 Sep-Oct;12(5):861-8. doi: 10.1109/TVCG.2006.112.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验