文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

CLTS-GAN:用于结肠镜检查的颜色-光照-纹理-镜面反射增强技术

CLTS-GAN: Color-Lighting-Texture-Specular Reflection Augmentation for Colonoscopy.

作者信息

Mathew Shawn, Nadeem Saad, Kaufman Arie

机构信息

Department of Computer Science, Stony Brook University.

Department of Medical Physics, Memorial Sloan Kettering Cancer Center.

出版信息

Med Image Comput Comput Assist Interv. 2022 Sep;2022:519-529. doi: 10.1007/978-3-031-16449-1_49. Epub 2022 Sep 17.


DOI:10.1007/978-3-031-16449-1_49
PMID:36178456
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9518696/
Abstract

Automated analysis of optical colonoscopy (OC) video frames (to assist endoscopists during OC) is challenging due to variations in color, lighting, texture, and specular reflections. Previous methods either remove some of these variations via preprocessing (making pipelines cumbersome) or add diverse training data with annotations (but expensive and time-consuming). We present CLTS-GAN, a new deep learning model that gives fine control over color, lighting, texture, and specular reflection synthesis for OC video frames. We show that adding these colonoscopy-specific augmentations to the training data can improve state-of-the-art polyp detection/segmentation methods as well as drive next generation of OC simulators for training medical students. The code and pre-trained models for CLTS-GAN are available on Computational Endoscopy Platform GitHub (https://github.com/nadeemlab/CEP).

摘要

由于颜色、光照、纹理和镜面反射的变化,对光学结肠镜检查(OC)视频帧进行自动分析(以在OC过程中协助内镜医师)具有挑战性。以前的方法要么通过预处理消除其中一些变化(使流程变得繁琐),要么添加带有注释的多样化训练数据(但成本高昂且耗时)。我们提出了CLTS-GAN,这是一种新的深度学习模型,可对OC视频帧的颜色、光照、纹理和镜面反射合成进行精细控制。我们表明,在训练数据中添加这些特定于结肠镜检查的增强功能可以改进当前最先进的息肉检测/分割方法,并推动用于培训医学生的下一代OC模拟器的发展。CLTS-GAN的代码和预训练模型可在计算内镜平台GitHub(https://github.com/nadeemlab/CEP)上获取。

相似文献

[1]
CLTS-GAN: Color-Lighting-Texture-Specular Reflection Augmentation for Colonoscopy.

Med Image Comput Comput Assist Interv. 2022-9

[2]
VISUALIZING MISSING SURFACES IN COLONOSCOPY VIDEOS USING SHARED LATENT SPACE REPRESENTATIONS.

Proc IEEE Int Symp Biomed Imaging. 2021-4

[3]
FoldIt: Haustral Folds Detection and Segmentation in Colonoscopy Videos.

Med Image Comput Comput Assist Interv. 2021

[4]
GAN Inversion for Data Augmentation to Improve Colonoscopy Lesion Classification.

IEEE J Biomed Health Inform. 2025-6

[5]
Augmenting Colonoscopy using Extended and Directional CycleGAN for Lossy Image Translation.

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2020-6

[6]
PolypMixNet: Enhancing semi-supervised polyp segmentation with polyp-aware augmentation.

Comput Biol Med. 2024-3

[7]
Automatic Polyp Segmentation with Multiple Kernel Dilated Convolution Network.

Proc IEEE Int Symp Comput Based Med Syst. 2022-7

[8]
Integrating Online and Offline Three-Dimensional Deep Learning for Automated Polyp Detection in Colonoscopy Videos.

IEEE J Biomed Health Inform. 2017-1

[9]
Examining the effect of synthetic data augmentation in polyp detection and segmentation.

Int J Comput Assist Radiol Surg. 2022-7

[10]
MSRAformer: Multiscale spatial reverse attention network for polyp segmentation.

Comput Biol Med. 2022-12

引用本文的文献

[1]
GAN Inversion for Data Augmentation to Improve Colonoscopy Lesion Classification.

IEEE J Biomed Health Inform. 2025-6

[2]
Artificial intelligence in colonoscopy: from detection to diagnosis.

Korean J Intern Med. 2024-7

[3]
Diagnosis of Depth of Submucosal Invasion in Colorectal Cancer with AI Using Deep Learning.

Cancers (Basel). 2022-10-31

本文引用的文献

[1]
FoldIt: Haustral Folds Detection and Segmentation in Colonoscopy Videos.

Med Image Comput Comput Assist Interv. 2021

[2]
Effect of Artificial Intelligence Tutoring vs Expert Instruction on Learning Simulated Surgical Skills Among Medical Students: A Randomized Clinical Trial.

JAMA Netw Open. 2022-2-1

[3]
Computer-Aided Detection of Polyps in Optical Colonoscopy Images.

Proc SPIE Int Soc Opt Eng. 2016

[4]
RNNSLAM: Reconstructing the 3D colon to visualize missing regions during a colonoscopy.

Med Image Anal. 2021-8

[5]
VR-Caps: A Virtual Environment for Capsule Endoscopy.

Med Image Anal. 2021-5

[6]
Augmenting Colonoscopy using Extended and Directional CycleGAN for Lossy Image Translation.

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2020-6

[7]
HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy.

Sci Data. 2020-8-28

[8]
A Style-Based Generator Architecture for Generative Adversarial Networks.

IEEE Trans Pattern Anal Mach Intell. 2021-12

[9]
Unsupervised Reverse Domain Adaptation for Synthetic Medical Images via Adversarial Training.

IEEE Trans Med Imaging. 2018-6-1

[10]
A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images.

J Healthc Eng. 2017-7-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索