Suppr超能文献

基于四元数深度学习的肺炎分类

Pneumonia classification using quaternion deep learning.

作者信息

Singh Sukhendra, Tripathi B K

机构信息

JSS Academy of Technical Education, Noida, India.

Harcourt Butler Technological University Kanpur, Kanpur, India.

出版信息

Multimed Tools Appl. 2022;81(2):1743-1764. doi: 10.1007/s11042-021-11409-7. Epub 2021 Oct 12.

Abstract

Pneumonia is an infection in one or both the lungs because of virus or bacteria through breathing air. It inflames air sacs in lungs which fill with fluid which further leads to problems in respiration. Pneumonia is interpreted by radiologists by observing abnormality in lungs in case of fluid in Chest X-Rays. Computer Aided Detection Diagnosis (CAD) tools can assist radiologists by improving their diagnostic accuracy. Such CAD tools use neural networks which are trained on Chest X-Ray dataset to classify a Chest X-Ray into normal or infected with Pneumonia. Convolution neural networks have shown remarkable performance in object detection in an image. Quaternion Convolution neural network (QCNN) is a generalization of conventional convolution neural networks. QCNN treats all three channels (R, G, B) of color image as a single unit and it extracts better representative features and which further improves classification. In this paper, we have trained Quaternion residual network on a publicly available large Chest X-Ray dataset on Kaggle repository and obtained classification accuracy of 93.75% and F-score of .94. We have also compared our performance with other CNN architectures. We found that classification accuracy was higher with Quaternion Residual network when we compared it with a real valued Residual network.

摘要

肺炎是由于通过呼吸空气感染病毒或细菌而导致一侧或双侧肺部发生的感染。它会使肺部的气囊发炎,气囊中充满液体,进而导致呼吸问题。放射科医生通过观察胸部X光片中出现液体时肺部的异常情况来诊断肺炎。计算机辅助检测诊断(CAD)工具可以通过提高放射科医生的诊断准确性来提供帮助。此类CAD工具使用在胸部X光数据集上训练的神经网络,将胸部X光片分类为正常或感染肺炎。卷积神经网络在图像目标检测方面表现出卓越性能。四元数卷积神经网络(QCNN)是传统卷积神经网络的推广。QCNN将彩色图像的所有三个通道(R、G、B)视为一个单元,它能提取更好的代表性特征,进而提高分类效果。在本文中,我们在Kaggle库中一个公开可用的大型胸部X光数据集上训练了四元数残差网络,获得了93.75%的分类准确率和0.94的F分数。我们还将我们的性能与其他CNN架构进行了比较。我们发现,与实值残差网络相比,四元数残差网络的分类准确率更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aca3/8506489/8544b23bf59c/11042_2021_11409_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验