Suppr超能文献

脆弱拟杆菌 6 个基因同源物分析表明, 在实验性肠道定植和腹腔感染中对生存是必需的。

Analysis of Six Gene Homologs in Bacteroides fragilis Revealed That is Essential for Survival in Experimental Intestinal Colonization and Intra-Abdominal Infection.

机构信息

Department of Microbiology and Immunology, Brody School of Medicine, East Carolina Universitygrid.255364.3, Greenville, North Carolina, USA.

Department of Comparative Medicine, Brody School of Medicine, East Carolina Universitygrid.255364.3, Greenville, North Carolina, USA.

出版信息

Infect Immun. 2022 Jan 25;90(1):e0046921. doi: 10.1128/IAI.00469-21. Epub 2021 Oct 18.

Abstract

The opportunistic, anaerobic pathogen and commensal of the human large intestinal tract, Bacteroides fragilis strain 638R, contains six predicted TonB proteins, termed TonB1-6, four ExbBs orthologs, ExbB1-4, and five ExbDs orthologs, ExbD1-5. The inner membrane TonB/ExbB/ExbD complex harvests energy from the proton motive force (Δp), and the TonB C-terminal domain interacts with and transduces energy to outer membrane TonB-dependent transporters (TBDTs). However, TonB's role in activating nearly one hundred TBDTs for nutrient acquisition in B. fragilis during intestinal colonization and extraintestinal infection has not been established. In this study, we show that growth was abolished in the mutant when heme, vitamin B, Fe(III)-ferrichrome, starch, mucin-glycans, or N-linked glycans were used as a substrate for growth . Genetic complementation of the mutant with the gene restored growth on these substrates. The , , and single mutants did not show a growth defect. This indicates that there was no functional compensation for the lack of TonB3, and it demonstrates that TonB3, alone, drives the TBDTs involved in the transport of essential nutrients. The mutant had a severe growth defect in a mouse model of intestinal colonization compared to the parent strain. This intestinal growth defect was enhanced in the double mutant strain, which completely lost its ability to colonize the mouse intestinal tract compared to the parent strain. The , , and mutants did not significantly affect intestinal colonization. Moreover, the survival of the mutant strain was completely eradicated in a rat model of intra-abdominal infection. Taken together, these findings show that TonB3 was essential for survival . The genetic organization of , , and gene orthologs indicates that they may interact with periplasmic and nonreceptor outer membrane proteins, but the physiological relevance of this has not been defined. Because anaerobic fermentation metabolism yields a lower Δp than aerobic respiration and B. fragilis has a reduced redox state in its periplasmic space-in contrast to an oxidative environment in aerobes-it remains to be determined if the diverse system of TonB/ExbB/ExbD orthologs encoded by B. fragilis have an increased sensitivity to PMF (relative to aerobic bacteria) to allow for the harvesting of energy under anaerobic conditions.

摘要

脆弱拟杆菌 638R 是一种机会性、厌氧病原体和人体大肠的共生菌,它含有六个预测的 TonB 蛋白,分别称为 TonB1-6,四个 ExbB 同源物 ExbB1-4,和五个 ExbD 同源物 ExbD1-5。内膜 TonB/ExbB/ExbD 复合物从质子动力势 (Δp) 中获取能量,TonB C 末端结构域与并将能量传递给外膜 TonB 依赖性转运体 (TBDT)。然而,TonB 在肠道定植和肠道外感染期间激活脆弱拟杆菌中近百个 TBDT 以获取营养物质的作用尚未确定。在这项研究中,我们表明,当血红素、维生素 B、Fe(III)-高铁血红素、淀粉、粘蛋白聚糖或 N-连接聚糖作为生长底物时, 突变体的生长被完全废除 。用 基因对 突变体进行遗传互补恢复了这些底物上的生长。 、 、 和 单突变体没有表现出生长缺陷。这表明 TonB3 的缺乏没有功能补偿,这表明 TonB3 单独驱动涉及必需营养素转运的 TBDT。与亲本菌株相比, 突变体在肠道定植的小鼠模型中表现出严重的生长缺陷。与亲本菌株相比,在 双突变体菌株中,这种肠道生长缺陷得到了增强,该菌株完全丧失了定植小鼠肠道的能力。 、 、 和 突变体对肠道定植没有显著影响。此外,在大鼠腹腔感染模型中, 突变株的存活率完全被根除。总之,这些发现表明 TonB3 是生存所必需的。 、 、 和 基因同源物的遗传组织表明它们可能与周质和非受体外膜蛋白相互作用,但这一生理相关性尚未确定。由于厌氧发酵代谢产生的 Δp 低于需氧呼吸,并且脆弱拟杆菌的周质空间中的氧化还原状态降低-与需氧菌中的氧化环境相反-因此仍需确定 TonB/ExbB/ExbD 同源物的多样化系统是否由脆弱拟杆菌编码对 PMF(相对于需氧细菌)更敏感,以允许在厌氧条件下获取能量。

相似文献

4
Functional Diversity of TonB-Like Proteins in the Heterocyst-Forming Cyanobacterium sp. PCC 7120.
mSphere. 2021 Dec 22;6(6):e0021421. doi: 10.1128/mSphere.00214-21. Epub 2021 Nov 17.
5
Vibrio cholerae iron transport: haem transport genes are linked to one of two sets of tonB, exbB, exbD genes.
Mol Microbiol. 1998 Sep;29(6):1493-507. doi: 10.1046/j.1365-2958.1998.01034.x.
6
Contribution of Active Iron Uptake to Acinetobacter baumannii Pathogenicity.
Infect Immun. 2019 Mar 25;87(4). doi: 10.1128/IAI.00755-18. Print 2019 Apr.
7
Multiple TonB Homologs are Important for Carbohydrate Utilization by .
bioRxiv. 2023 Jul 7:2023.07.07.548152. doi: 10.1101/2023.07.07.548152.
8
The Intrinsically Disordered Region of ExbD Is Required for Signal Transduction.
J Bacteriol. 2020 Mar 11;202(7). doi: 10.1128/JB.00687-19.
10
From Homodimer to Heterodimer and Back: Elucidating the TonB Energy Transduction Cycle.
J Bacteriol. 2015 Nov;197(21):3433-45. doi: 10.1128/JB.00484-15. Epub 2015 Aug 17.

引用本文的文献

1
Genetic- and culture-based tools for studying .
Microbiol Resour Announc. 2025 May 8;14(5):e0000625. doi: 10.1128/mra.00006-25. Epub 2025 Mar 25.
2
Substrate Uptake by TonB-Dependent Outer Membrane Transporters.
Mol Microbiol. 2024 Dec;122(6):929-947. doi: 10.1111/mmi.15332. Epub 2024 Dec 3.
5
The dual role of TonB genes in turnerbactin uptake and carbohydrate utilization in the shipworm symbiont .
Appl Environ Microbiol. 2023 Dec 21;89(12):e0074423. doi: 10.1128/aem.00744-23. Epub 2023 Nov 27.
6
Energization of Outer Membrane Transport by the ExbB ExbD Molecular Motor.
J Bacteriol. 2023 Jun 27;205(6):e0003523. doi: 10.1128/jb.00035-23. Epub 2023 May 23.
7
Composition and functions of bacterial membrane vesicles.
Nat Rev Microbiol. 2023 Jul;21(7):415-430. doi: 10.1038/s41579-023-00875-5. Epub 2023 Mar 17.
8
A putative siderophore receptor of 12656-12 under Fur control also binds hemoglobin.
Front Microbiol. 2022 Aug 16;13:951173. doi: 10.3389/fmicb.2022.951173. eCollection 2022.
9
Roles of SmeYZ, SbiAB, and SmeDEF Efflux Systems in Iron Homeostasis of Stenotrophomonas maltophilia.
Microbiol Spectr. 2022 Jun 29;10(3):e0244821. doi: 10.1128/spectrum.02448-21. Epub 2022 Jun 1.

本文引用的文献

1
Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics.
Chem Rev. 2021 May 12;121(9):5193-5239. doi: 10.1021/acs.chemrev.0c01005. Epub 2021 Mar 16.
2
BamA forms a translocation channel for polypeptide export across the bacterial outer membrane.
Mol Cell. 2021 May 6;81(9):2000-2012.e3. doi: 10.1016/j.molcel.2021.02.023. Epub 2021 Mar 10.
3
Building Better Barrels - β-barrel Biogenesis and Insertion in Bacteria and Mitochondria.
J Mol Biol. 2021 Aug 6;433(16):166894. doi: 10.1016/j.jmb.2021.166894. Epub 2021 Feb 24.
4
TonB-dependent transporters in the Bacteroidetes: Unique domain structures and potential functions.
Mol Microbiol. 2021 Mar;115(3):490-501. doi: 10.1111/mmi.14683. Epub 2021 Feb 3.
6
Host glycan utilization within the Bacteroidetes Sus-like paradigm.
Glycobiology. 2021 Jun 29;31(6):697-706. doi: 10.1093/glycob/cwaa054.
8
Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis.
Nat Microbiol. 2020 Aug;5(8):1016-1025. doi: 10.1038/s41564-020-0716-y. Epub 2020 May 11.
9
The Uptake, Trafficking, and Biodistribution of Generated Outer Membrane Vesicles.
Front Microbiol. 2020 Feb 6;11:57. doi: 10.3389/fmicb.2020.00057. eCollection 2020.
10
A TonB-dependent receptor constitutes the outer membrane transport system for a lignin-derived aromatic compound.
Commun Biol. 2019 Nov 22;2:432. doi: 10.1038/s42003-019-0676-z. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验