Suppr超能文献

新冠病毒的机制建模和封锁对短期的影响。

Mechanistic modelling of COVID-19 and the impact of lockdowns on a short-time scale.

机构信息

Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait.

Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom.

出版信息

PLoS One. 2021 Oct 18;16(10):e0258084. doi: 10.1371/journal.pone.0258084. eCollection 2021.

Abstract

BACKGROUND

To mitigate the spread of the COVID-19 coronavirus, some countries have adopted more stringent non-pharmaceutical interventions in contrast to those widely used. In addition to standard practices such as enforcing curfews, social distancing, and closure of non-essential service industries, other non-conventional policies also have been implemented, such as the total lockdown of fragmented regions, which are composed of sparsely and highly populated areas.

METHODS

In this paper, we model the movement of a host population using a mechanistic approach based on random walks, which are either diffusive or super-diffusive. Infections are realised through a contact process, whereby a susceptible host is infected if in close spatial proximity of the infectious host with an assigned transmission probability. Our focus is on a short-time scale (∼ 3 days), which is the average time lag time before an infected individual becomes infectious.

RESULTS

We find that the level of infection remains approximately constant with an increase in population diffusion, and also in the case of faster population dispersal (super-diffusion). Moreover, we demonstrate how the efficacy of imposing a lockdown depends heavily on how susceptible and infectious individuals are distributed over space.

CONCLUSION

Our results indicate that on a short-time scale, the type of movement behaviour does not play an important role in rising infection levels. Also, lock-down restrictions are ineffective if the population distribution is homogeneous. However, in the case of a heterogeneous population, lockdowns are effective if a large proportion of infectious carriers are distributed in sparsely populated sub-regions.

摘要

背景

为了减轻 COVID-19 冠状病毒的传播,一些国家采取了比广泛使用的更为严格的非药物干预措施。除了实施宵禁、社交距离和关闭非必要服务业等标准做法外,还实施了其他非常规政策,例如对由人口稀少且高度密集地区组成的碎片化区域实行全面封锁。

方法

在本文中,我们使用基于随机游走的机制方法来模拟宿主群体的运动,其中随机游走可以是扩散的或超级扩散的。感染是通过接触过程实现的,如果易感宿主与传染性宿主在给定的传播概率下处于近距离空间接近,则易感宿主会被感染。我们关注的是短期时间尺度(约 3 天),即感染个体变得具有传染性之前的平均时间滞后。

结果

我们发现,随着人口扩散的增加,感染水平大致保持不变,而且在人口扩散更快的情况下(超级扩散)也是如此。此外,我们展示了如何实施封锁的效果在很大程度上取决于易感和感染个体在空间上的分布。

结论

我们的结果表明,在短期时间尺度内,运动行为的类型在感染水平上升方面并不重要。如果人口分布均匀,封锁限制则无效。但是,如果人口分布不均匀,并且将大量感染载体分布在人口稀少的子区域中,则封锁是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2043/8523076/a547a00f1d3e/pone.0258084.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验