Suppr超能文献

在 APP 合成过程中,核糖体停滞的质量控制效率低下会产生 CAT 尾的物质,这些物质沉淀下来会引发阿尔茨海默病的标志性特征。

Inefficient quality control of ribosome stalling during APP synthesis generates CAT-tailed species that precipitate hallmarks of Alzheimer's disease.

机构信息

Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.

出版信息

Acta Neuropathol Commun. 2021 Oct 18;9(1):169. doi: 10.1186/s40478-021-01268-6.

Abstract

Amyloid precursor protein (APP) metabolism is central to Alzheimer's disease (AD) pathogenesis, but the key etiological driver remains elusive. Recent failures of clinical trials targeting amyloid-β (Aβ) peptides, the proteolytic fragments of amyloid precursor protein (APP) that are the main component of amyloid plaques, suggest that the proteostasis-disrupting, key pathogenic species remain to be identified. Previous studies suggest that APP C-terminal fragment (APP.C99) can cause disease in an Aβ-independent manner. The mechanism of APP.C99 pathogenesis is incompletely understood. We used Drosophila models expressing APP.C99 with the native ER-targeting signal of human APP, expressing full-length human APP only, or co-expressing full-length human APP and β-secretase (BACE), to investigate mechanisms of APP.C99 pathogenesis. Key findings are validated in mammalian cell culture models, mouse 5xFAD model, and postmortem AD patient brain materials. We find that ribosomes stall at the ER membrane during co-translational translocation of APP.C99, activating ribosome-associated quality control (RQC) to resolve ribosome collision and stalled translation. Stalled APP.C99 species with C-terminal extensions (CAT-tails) resulting from inadequate RQC are prone to aggregation, causing endolysosomal and autophagy defects and seeding the aggregation of amyloid β peptides, the main component of amyloid plaques. Genetically removing stalled and CAT-tailed APP.C99 rescued proteostasis failure, endolysosomal/autophagy dysfunction, neuromuscular degeneration, and cognitive deficits in AD models. Our finding of RQC factor deposition at the core of amyloid plaques from AD brains further supports the central role of defective RQC of ribosome collision and stalled translation in AD pathogenesis. These findings demonstrate that amyloid plaque formation is the consequence and manifestation of a deeper level proteostasis failure caused by inadequate RQC of translational stalling and the resultant aberrantly modified APP.C99 species, previously unrecognized etiological drivers of AD and newly discovered therapeutic targets.

摘要

淀粉样前体蛋白(APP)代谢是阿尔茨海默病(AD)发病机制的核心,但关键的病因驱动因素仍难以捉摸。最近靶向淀粉样β(Aβ)肽的临床试验失败,这些肽是淀粉样前体蛋白(APP)的蛋白水解片段,是淀粉样斑块的主要成分,表明需要确定破坏蛋白质平衡的关键致病物质。先前的研究表明,APP C 端片段(APP.C99)可以以不依赖 Aβ的方式引起疾病。APP.C99 发病机制的机制尚不完全清楚。我们使用表达 APP.C99 的果蝇模型,该模型具有人类 APP 的天然内质网靶向信号,仅表达全长人类 APP,或共表达全长人类 APP 和β-分泌酶(BACE),以研究 APP.C99 发病机制的机制。在哺乳动物细胞培养模型、5xFAD 模型和 AD 患者死后脑组织材料中验证了关键发现。我们发现,APP.C99 的共翻译易位过程中核糖体在内质网膜上停滞,激活核糖体相关质量控制(RQC)以解决核糖体碰撞和翻译停滞。由于 RQC 不足而导致 C 端延伸(CAT-尾巴)的停滞 APP.C99 物种容易聚集,导致内溶酶体和自噬缺陷,并引发淀粉样β肽的聚集,淀粉样β肽是淀粉样斑块的主要成分。通过遗传去除停滞和 CAT-尾巴 APP.C99 挽救了 AD 模型中的蛋白质平衡失败、内溶酶体/自噬功能障碍、神经肌肉退化和认知缺陷。我们在来自 AD 大脑的淀粉样斑块核心中发现 RQC 因子沉积的发现进一步支持了核糖体碰撞和翻译停滞的缺陷 RQC 在 AD 发病机制中的核心作用。这些发现表明,淀粉样斑块的形成是由于 RQC 不足导致翻译停滞和由此产生的异常修饰的 APP.C99 物种的蛋白质平衡更深层次的失败的结果和表现,以前未被认识到的 AD 的病因驱动因素和新发现的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3324/8522249/7c56aaaa4a7d/40478_2021_1268_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验