Suppr超能文献

骨应变指数可预测骨质疏松女性的脆性骨折:一项基于人工智能的研究。

Bone Strain Index predicts fragility fracture in osteoporotic women: an artificial intelligence-based study.

机构信息

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122, Milan, Italy.

Current address: Università Vita-Salute San Raffaele, Via Olgettina, 58 20132, Milan, Italy.

出版信息

Eur Radiol Exp. 2021 Oct 19;5(1):47. doi: 10.1186/s41747-021-00242-0.

Abstract

BACKGROUND

We applied an artificial intelligence-based model to predict fragility fractures in postmenopausal women, using different dual-energy x-ray absorptiometry (DXA) parameters.

METHODS

One hundred seventy-four postmenopausal women without vertebral fractures (VFs) at baseline (mean age 66.3 ± 9.8) were retrospectively evaluated. Data has been collected from September 2010 to August 2018. All subjects performed a spine x-ray to assess VFs, together with lumbar and femoral DXA for bone mineral density (BMD) and the bone strain index (BSI) evaluation. Follow-up exams were performed after 3.34 ± 1.91 years. Considering the occurrence of new VFs at follow-up, two groups were created: fractured versus not-fractured. We applied an artificial neural network (ANN) analysis with a predictive tool (TWIST system) to select relevant input data from a list of 13 variables including BMD and BSI. A semantic connectivity map was built to analyse the connections among variables within the groups. For group comparisons, an independent-samples t-test was used; variables were expressed as mean ± standard deviation.

RESULTS

For each patient, we evaluated a total of n = 6 exams. At follow-up, n = 69 (39.6%) women developed a VF. ANNs reached a predictive accuracy of 79.56% within the training testing procedure, with a sensitivity of 80.93% and a specificity of 78.18%. The semantic connectivity map showed that a low BSI at the total femur is connected to the absence of VFs.

CONCLUSION

We found a high performance of ANN analysis in predicting the occurrence of VFs. Femoral BSI appears as a useful DXA index to identify patients at lower risk for lumbar VFs.

摘要

背景

我们应用一种基于人工智能的模型,使用不同的双能 X 射线吸收法(DXA)参数来预测绝经后妇女的脆性骨折。

方法

174 例基线时无椎体骨折(VF)的绝经后妇女(平均年龄 66.3±9.8 岁)进行回顾性评估。数据采集自 2010 年 9 月至 2018 年 8 月。所有患者均进行脊柱 X 射线检查以评估 VF,并进行腰椎和股骨 DXA 检查以评估骨密度(BMD)和骨应变指数(BSI)。随访检查在 3.34±1.91 年后进行。考虑到随访时新发 VF 的发生,将两组患者分为骨折组和未骨折组。我们应用人工神经网络(ANN)分析和预测工具(TWIST 系统),从包括 BMD 和 BSI 在内的 13 个变量列表中选择相关的输入数据。构建语义连接图以分析组内变量之间的连接。对于组间比较,使用独立样本 t 检验;变量表示为均值±标准差。

结果

每位患者共评估了 n=6 次检查。随访时,n=69(39.6%)名女性发生 VF。ANN 在训练测试过程中的预测准确率为 79.56%,灵敏度为 80.93%,特异性为 78.18%。语义连接图显示,全股骨的低 BSI 与无 VF 相关。

结论

我们发现 ANN 分析在预测 VF 发生方面具有较高的性能。股骨 BSI 似乎是一种有用的 DXA 指标,可以识别腰椎 VF 风险较低的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bcc/8523735/ae51afdc29be/41747_2021_242_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验