Suppr超能文献

用于预测骨质疏松症中脆性骨折风险的人工智能

Artificial intelligence for predicting the risk of bone fragility fractures in osteoporosis.

作者信息

Ulivieri Fabio Massimo, Messina Carmelo, Vitale Francesco Maria, Rinaudo Luca, Grossi Enzo

机构信息

Bone Metabolic Unit, Rome American Hospital, Gruppo Nefrocenter, Roma, Italy.

U.O.C. Radiodiagnostica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan, Italy.

出版信息

Eur Radiol Exp. 2025 Jun 24;9(1):62. doi: 10.1186/s41747-025-00572-3.

Abstract

Osteoporosis is widespread with a high incidence rate, resulting in fragility fractures which are a major contributor to mortality among the elderly. Artificial intelligence (AI), in particular artificial neural networks, appears to be useful in managing osteoporosis complexity, where bone mineral density usually reduces with aging, losing the pivotal role in decision-making regarding fracture prediction and treatment choice. Nevertheless, only some osteoporotic patients develop fragility fractures, and treatments often are not prescribed because of the high costs and poor patient adherence. AI can help clinicians to identify patients prone to fragility fractures who can benefit from preventive interventions. We describe herein the methodology issues underlying the potential advantages of introducing AI methods to support clinical decision-making in osteoporosis, being aware of challenges regarding data availability and quality, model interpretability, integration into clinical workflows, and validation of predictive accuracy. The fact that no AI fracture risk prediction software is still publicly available can be related to the fact that few high-quality datasets are available and that AI models, particularly deep learning approaches, often act as 'black boxes', making it difficult to understand how predictions are made. In addition, the effective implementation of predictive software has not reached sufficient integration with existing systems. RELEVANCE STATEMENT: With aging, bone mineral density may lose the pivotal role in osteoporosis decision-making regarding fracture prediction and treatment choice. In this scenario, AI, particularly artificial neural networks (ANNs), can be useful in supporting the clinical management of patients affected by osteoporosis. KEY POINTS: Osteoporosis is a complex disease with many interlinked clinical and radiological variables. Bone mineral density and other known indices do not allow optimal decision-making in patients affected by osteoporosis. ANN analysis can better discriminate osteoporotic patients particularly prone to fragility fractures and can predict future fractures.

摘要

骨质疏松症广泛存在且发病率高,会导致脆性骨折,而脆性骨折是老年人死亡的主要原因之一。人工智能(AI),尤其是人工神经网络,似乎有助于应对骨质疏松症的复杂性,在这种情况下,骨密度通常会随着年龄增长而降低,在骨折预测和治疗选择的决策中失去关键作用。然而,只有部分骨质疏松症患者会发生脆性骨折,而且由于成本高昂且患者依从性差,治疗往往未得到处方。人工智能可以帮助临床医生识别容易发生脆性骨折且能从预防性干预中获益的患者。我们在此描述将人工智能方法引入以支持骨质疏松症临床决策的潜在优势背后的方法学问题,同时意识到数据可用性和质量、模型可解释性、融入临床工作流程以及预测准确性验证等方面的挑战。目前尚无人工智能骨折风险预测软件公开可用,这一事实可能与高质量数据集较少以及人工智能模型(尤其是深度学习方法)通常像“黑匣子”一样,难以理解其预测方式有关。此外,预测软件的有效实施尚未与现有系统充分整合。相关性声明:随着年龄增长,骨密度在骨质疏松症骨折预测和治疗选择的决策中可能会失去关键作用。在这种情况下,人工智能,尤其是人工神经网络(ANN),可有助于支持骨质疏松症患者的临床管理。关键点:骨质疏松症是一种复杂疾病,有许多相互关联的临床和放射学变量。骨密度和其他已知指标无法让受骨质疏松症影响的患者做出最佳决策。人工神经网络分析可以更好地鉴别特别容易发生脆性骨折的骨质疏松症患者,并能预测未来骨折。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37b7/12187619/df3869076798/41747_2025_572_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验