Suppr超能文献

快速-缓慢分析作为一种理解神经元对电流斜坡反应的技术。

Fast-slow analysis as a technique for understanding the neuronal response to current ramps.

机构信息

Department of Mathematics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.

Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA.

出版信息

J Comput Neurosci. 2022 May;50(2):145-159. doi: 10.1007/s10827-021-00799-0. Epub 2021 Oct 19.

Abstract

The standard protocol for studying the spiking properties of single neurons is the application of current steps while monitoring the voltage response. Although this is informative, the jump in applied current is artificial. A more physiological input is where the applied current is ramped up, reflecting chemosensory input. Unsurprisingly, neurons can respond differently to the two protocols, since ion channel activation and inactivation are affected differently. Understanding the effects of current ramps, and changes in their slopes, is facilitated by mathematical models. However, techniques for analyzing current ramps are under-developed. In this article, we demonstrate how current ramps can be analyzed in single neuron models. The primary issue is the presence of gating variables that activate on slow time scales and are therefore far from equilibrium throughout the ramp. The use of an appropriate fast-slow analysis technique allows one to fully understand the neural response to ramps of different slopes. This study is motivated by data from olfactory bulb dopamine neurons, where both fast ramp (tens of milliseconds) and slow ramp (tens of seconds) protocols are used to understand the spiking profiles of the cells. The slow ramps generate experimental bifurcation diagrams with the applied current as a bifurcation parameter, thereby establishing asymptotic spiking activity patterns. The faster ramps elicit purely transient behavior that is of relevance to most physiological inputs, which are short in duration. The two protocols together provide a broader understanding of the neuron's spiking profile and the role that slowly activating ion channels can play.

摘要

研究单个神经元尖峰属性的标准方法是在监测电压响应的同时施加电流阶跃。虽然这很有启发性,但施加的电流跳跃是人为的。更具生理意义的输入是施加的电流逐渐上升,反映化学感觉输入。毫不奇怪,神经元对这两种方案的反应不同,因为离子通道的激活和失活受到不同的影响。数学模型有助于理解电流斜坡的影响及其斜率的变化。然而,电流斜坡的分析技术还不够发达。在本文中,我们展示了如何在单个神经元模型中分析电流斜坡。主要问题是存在门控变量,它们在缓慢的时间尺度上激活,因此在整个斜坡过程中远远偏离平衡。适当的快慢分析技术的使用允许人们充分理解不同斜率的斜坡对神经元的响应。这项研究的动机来自嗅球多巴胺神经元的数据,其中快速斜坡(几十毫秒)和慢速斜坡(几十秒)方案都用于理解细胞的尖峰分布。慢斜坡以施加的电流为分岔参数生成实验分岔图,从而建立渐近的尖峰活动模式。更快的斜坡引起纯粹的瞬态行为,这与大多数生理输入有关,这些输入持续时间很短。这两种方案共同提供了对神经元尖峰分布的更广泛理解,以及缓慢激活离子通道可能发挥的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8446/9016091/2eebafeb8d43/nihms-1763371-f0001.jpg

相似文献

4
Spiking and Membrane Properties of Rat Olfactory Bulb Dopamine Neurons.大鼠嗅球多巴胺能神经元的放电和膜特性
Front Cell Neurosci. 2020 Mar 20;14:60. doi: 10.3389/fncel.2020.00060. eCollection 2020.

本文引用的文献

2
Spiking and Membrane Properties of Rat Olfactory Bulb Dopamine Neurons.大鼠嗅球多巴胺能神经元的放电和膜特性
Front Cell Neurosci. 2020 Mar 20;14:60. doi: 10.3389/fncel.2020.00060. eCollection 2020.
3
Experience-Dependent Intrinsic Plasticity During Auditory Learning.听觉学习过程中的经验依赖性内在可塑性。
J Neurosci. 2019 Feb 13;39(7):1206-1221. doi: 10.1523/JNEUROSCI.1036-18.2018. Epub 2018 Dec 12.
7
Multi-timescale systems and fast-slow analysis.多时间尺度系统与快慢分析。
Math Biosci. 2017 May;287:105-121. doi: 10.1016/j.mbs.2016.07.003. Epub 2016 Jul 15.
9
The hTH-GFP reporter rat model for the study of Parkinson's disease.用于帕金森病研究的hTH-GFP报告基因大鼠模型。
PLoS One. 2014 Dec 2;9(12):e113151. doi: 10.1371/journal.pone.0113151. eCollection 2014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验