Suppr超能文献

赝象分析揭示了为什么大的 Ca2+ 窗口电流会促进心肌细胞中的早期后除极。

Canard analysis reveals why a large Ca2+ window current promotes early afterdepolarizations in cardiac myocytes.

机构信息

Department of Mathematics, Florida State University, Tallahassee, Florida, United States of America.

School of Mathematics, Monash University, Clayton, Victoria, Australia.

出版信息

PLoS Comput Biol. 2020 Nov 4;16(11):e1008341. doi: 10.1371/journal.pcbi.1008341. eCollection 2020 Nov.

Abstract

The pumping of blood through the heart is due to a wave of muscle contractions that are in turn due to a wave of electrical activity initiated at the sinoatrial node. At the cellular level, this wave of electrical activity corresponds to the sequential excitation of electrically coupled cardiac cells. Under some conditions, the normally-long action potentials of cardiac cells are extended even further by small oscillations called early afterdepolarizations (EADs) that can occur either during the plateau phase or repolarizing phase of the action potential. Hence, cellular EADs have been implicated as a driver of potentially lethal cardiac arrhythmias. One of the major determinants of cellular EAD production and repolarization failure is the size of the overlap region between Ca2+ channel activation and inactivation, called the window region. In this article, we interpret the role of the window region in terms of the fast-slow structure of a low-dimensional model for ventricular action potential generation. We demonstrate that the effects of manipulation of the size of the window region can be understood from the point of view of canard theory. We use canard theory to explain why enlarging the size of the window region elicits EADs and why shrinking the window region can eliminate them. We also use the canard mechanism to explain why some manipulations in the size of the window region have a stronger influence on cellular electrical behavior than others. This dynamical viewpoint gives predictive power that is beyond that of the biophysical explanation alone while also uncovering a common mechanism for phenomena observed in experiments on both atrial and ventricular cardiac cells.

摘要

心脏的血液泵出是由于一波肌肉收缩,而这一波肌肉收缩又是由于窦房结引发的一波电活动。在细胞水平上,这一波电活动对应于电耦合心肌细胞的顺序激发。在某些情况下,心肌细胞正常的长动作电位会进一步被称为早期后除极(EAD)的微小震荡延长,EAD 可以发生在动作电位的平台期或复极化期。因此,细胞 EAD 被认为是潜在致命性心律失常的驱动因素之一。细胞 EAD 产生和复极化失败的主要决定因素之一是钙通道激活和失活之间的重叠区域的大小,称为窗口区域。在本文中,我们根据心室动作电位产生的低维模型的快慢结构来解释窗口区域的作用。我们证明了可以从突现理论的角度来理解窗口区域大小变化的影响。我们使用突现理论来解释为什么增大窗口区域会引发 EAD,以及为什么缩小窗口区域可以消除它们。我们还使用突现机制来解释为什么窗口区域大小的某些变化对细胞电行为的影响比其他变化更大。这种动态观点提供了超越单纯生物物理解释的预测能力,同时揭示了在心房和心室心肌细胞实验中观察到的现象的共同机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b78/7641359/e6270f225e41/pcbi.1008341.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验