Suppr超能文献

通过生物正交主体-客体化学进行细胞表面标记。

Cell-surface Labeling via Bioorthogonal Host-Guest Chemistry.

机构信息

Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States.

出版信息

ACS Chem Biol. 2021 Nov 19;16(11):2124-2129. doi: 10.1021/acschembio.1c00494. Epub 2021 Oct 20.

Abstract

The widespread adoption of the bioorthogonal chemical reporter strategy revolutionized chemical biology. However, its translation to living mammals has been challenging, due to the size/stability properties of the chemical reporter group and/or the reaction kinetics of the labeling step. While developing new bioorthogonal reactions has been the traditional approach to optimizing the bioorthogonal chemical reporter strategy, here we present a different avenue, leveraging intermolecular interactions, to create bioorthogonal host-guest pairs. This approach, deemed "bioorthogonal complexation, does not rely on activated functional groups or second-order rate constants. We utilize the cucurbit[7]uril (CB[7]) scaffold to showcase bioorthogonal complexation and determine that medium-affinity ( ≈ 10-10 M) guests efficiently label cell surfaces and outperform the strain-promoted azide-alkyne cycloaddition. Finally, we implement bioorthogonal complexation in the chemical reporter strategy through the metabolic incorporation of -carborane into cell-surface glycans and detection with a CB[7]-fluorescein conjugate.

摘要

生物正交化学报告基团策略的广泛应用彻底改变了化学生物学。然而,由于化学报告基团的大小/稳定性和/或标记步骤的反应动力学,其在活体哺乳动物中的转化一直具有挑战性。虽然开发新的生物正交反应是优化生物正交化学报告基团策略的传统方法,但在这里,我们提出了一种不同的方法,利用分子间相互作用来创建生物正交主体-客体对。这种方法被称为“生物正交络合”,不依赖于活化的官能团或二级反应速率常数。我们利用葫芦[7]脲(CB[7])支架来展示生物正交络合,并确定中等亲和力(≈10-10 M)的客体能够有效地标记细胞表面,并优于应变促进的叠氮-炔环加成反应。最后,我们通过将 -碳硼烷代谢掺入细胞表面聚糖并使用 CB[7]-荧光素缀合物进行检测,在化学报告基团策略中实现了生物正交络合。

相似文献

1
Cell-surface Labeling via Bioorthogonal Host-Guest Chemistry.通过生物正交主体-客体化学进行细胞表面标记。
ACS Chem Biol. 2021 Nov 19;16(11):2124-2129. doi: 10.1021/acschembio.1c00494. Epub 2021 Oct 20.
4
From mechanism to mouse: a tale of two bioorthogonal reactions.从机制到小鼠:两种生物正交反应的故事。
Acc Chem Res. 2011 Sep 20;44(9):666-76. doi: 10.1021/ar200148z. Epub 2011 Aug 15.
8
Cucurbit[6]uril-Promoted Click Chemistry for Protein Modification.葫芦脲促进的点击化学用于蛋白质修饰。
J Am Chem Soc. 2017 Jul 19;139(28):9691-9697. doi: 10.1021/jacs.7b05164. Epub 2017 Jul 7.

引用本文的文献

3
Bioorthogonal chemistry: Bridging chemistry, biology, and medicine.生物正交化学:连接化学、生物学与医学。
Chem. 2023 Aug 10;9(8):2095-2109. doi: 10.1016/j.chempr.2023.05.016. Epub 2023 Jun 5.
7
Rapid Access to Chiral and Tripodal Cavitands from β-Pinene.β-蒎烯快速制备手性和三足状空腔化合物。
Chemistry. 2022 Dec 27;28(72):e202202416. doi: 10.1002/chem.202202416. Epub 2022 Nov 7.
8
DNA Strand Displacement Driven by Host-Guest Interactions.DNA 链置换由主体-客体相互作用驱动。
J Am Chem Soc. 2022 Sep 14;144(36):16502-16511. doi: 10.1021/jacs.2c05726. Epub 2022 Sep 5.

本文引用的文献

2
Molecular conjugation using non-covalent click chemistry.使用非共价点击化学的分子共轭
Nat Rev Chem. 2019 Jun;3(6):393-400. doi: 10.1038/s41570-019-0095-1. Epub 2019 Apr 24.
5
Exploiting metabolic glycoengineering to advance healthcare.利用代谢糖工程推进医疗保健。
Nat Rev Chem. 2019 Oct;3(10):605-620. doi: 10.1038/s41570-019-0126-y. Epub 2019 Sep 6.
7
The Future of Bioorthogonal Chemistry.生物正交化学的未来。
ACS Cent Sci. 2018 Aug 22;4(8):952-959. doi: 10.1021/acscentsci.8b00251. Epub 2018 Jul 23.
10
Toward an orthogonal central dogma.迈向正交中心法则。
Nat Chem Biol. 2018 Jan 16;14(2):103-106. doi: 10.1038/nchembio.2554.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验