Suppr超能文献

基于机器学习的软件在甲状腺细胞学全切片图像筛查中的应用。

Use of Machine Learning-Based Software for the Screening of Thyroid Cytopathology Whole Slide Images.

机构信息

From the Department of Electrical and Computer Engineering (Dov, Assaad, Carin), Duke University, Durham, North Carolina.

From the Department of Mathematics, University of North Carolina at Chapel Hill (Kovalsky).

出版信息

Arch Pathol Lab Med. 2022 Jul 1;146(7):872-878. doi: 10.5858/arpa.2020-0712-OA.

Abstract

CONTEXT.—: The use of whole slide images (WSIs) in diagnostic pathology presents special challenges for the cytopathologist. Informative areas on a direct smear from a thyroid fine-needle aspiration biopsy (FNAB) smear may be spread across a large area comprising blood and dead space. Manually navigating through these areas makes screening and evaluation of FNA smears on a digital platform time-consuming and laborious. We designed a machine learning algorithm that can identify regions of interest (ROIs) on thyroid fine-needle aspiration biopsy WSIs.

OBJECTIVE.—: To evaluate the ability of the machine learning algorithm and screening software to identify and screen for a subset of informative ROIs on a thyroid FNA WSI that can be used for final diagnosis.

DESIGN.—: A representative slide from each of 109 consecutive thyroid fine-needle aspiration biopsies was scanned. A cytopathologist reviewed each WSI and recorded a diagnosis. The machine learning algorithm screened and selected a subset of 100 ROIs from each WSI to present as an image gallery to the same cytopathologist after a washout period of 117 days.

RESULTS.—: Concordance between the diagnoses using WSIs and those using the machine learning algorithm-generated ROI image gallery was evaluated using pairwise weighted κ statistics. Almost perfect concordance was seen between the 2 methods with a κ score of 0.924.

CONCLUSIONS.—: Our results show the potential of the screening software as an effective screening tool with the potential to reduce cytopathologist workloads.

摘要

背景

全切片图像(WSI)在诊断病理学中的应用给细胞病理学家带来了特殊的挑战。甲状腺细针抽吸活检(FNAB)涂片的直接涂片上的有意义区域可能分布在一个包含血液和死腔的大面积区域内。手动浏览这些区域会使数字平台上的 FNAB 涂片的筛查和评估变得耗时且费力。我们设计了一种机器学习算法,可以识别甲状腺细针抽吸活检 WSI 上的感兴趣区域(ROI)。

目的

评估机器学习算法和筛选软件识别和筛选甲状腺 FNAB WSI 上有意义的 ROI 子集的能力,这些 ROI 子集可用于最终诊断。

设计

连续 109 例甲状腺细针抽吸活检的每张代表性切片都进行了扫描。细胞病理学家对每张 WSI 进行了回顾,并记录了诊断结果。在 117 天的洗脱期后,机器学习算法从每张 WSI 中筛选并选择了 100 个 ROI 的子集,作为图像库呈现给同一位细胞病理学家。

结果

使用 WSI 和使用机器学习算法生成的 ROI 图像库进行诊断的一致性使用成对加权κ统计进行评估。这两种方法之间存在高度一致,κ 评分为 0.924。

结论

我们的研究结果表明,该筛选软件具有作为一种有效的筛选工具的潜力,有可能减轻细胞病理学家的工作量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验