Solopov M V, Kavelina A S, Popandopulo A G, Turchin V V, Ishchenko R V, Filimonov D A
V.K. Gusak Institute of Emergency and Reconstructive Surgery.
Probl Endokrinol (Mosk). 2025 Jul 22;71(3):4-13. doi: 10.14341/probl13475.
Analysis and assessment of the role of convolutional neural networks in the cytological diagnosis of the thyroid pathology, exploring their potential for increasing the accuracy and automation of diagnostic processes.
Analysis of literature from Pubmed, Google Scholar and the scientific electronic library elibrary.ru using the keywords «thyroid», «cytology», «cytopathology», «fine-needle aspiration biopsy», «neural network» and «convolutional neural network». 12 articles published from 2018 to 2023 were selected for analysis.
The paper discusses the basic principles of the design of convolutional neural networks and the metrics that are used to assess their quality. An analysis of studies on the use of convolutional neural networks in the cytological diagnosis of the thyroid pathology was performed. According to the results, these neural networks classify pathological conditions with high accuracy and sensitivity, comparable to the work of an experienced cytologist. The accuracy of classification of papillary carcinoma can reach 99.7%. However, the lack of uniform standards for preparing images for training neural networks, the insufficient number of studies using multicenter data, and the narrow diagnostic range of available neural network models still limit the implementation of such AI systems in cytological diagnostic practice.
The available research results on various options for using convolutional neural networks in the cytological diagnosis of the thyroid pathology have every chance of becoming the initiator of a serious paradigm shift in conventional cytopathology towards digital and computational cytopathology, in which the main functions will be performed by AI systems.
分析和评估卷积神经网络在甲状腺病理细胞学诊断中的作用,探索其提高诊断过程准确性和自动化程度的潜力。
利用关键词“甲状腺”“细胞学”“细胞病理学”“细针穿刺活检”“神经网络”和“卷积神经网络”,对来自PubMed、谷歌学术和科学电子图书馆elibrary.ru的文献进行分析。选取2018年至2023年发表的12篇文章进行分析。
本文讨论了卷积神经网络的设计基本原则以及用于评估其质量的指标。对卷积神经网络在甲状腺病理细胞学诊断中的应用研究进行了分析。结果显示,这些神经网络对病理状况的分类具有较高的准确性和敏感性,与经验丰富的细胞学家的工作相当。乳头状癌的分类准确率可达99.7%。然而,用于训练神经网络的图像准备缺乏统一标准、使用多中心数据的研究数量不足以及现有神经网络模型的诊断范围狭窄,仍然限制了此类人工智能系统在细胞学诊断实践中的应用。
关于卷积神经网络在甲状腺病理细胞学诊断中的各种应用的现有研究成果,极有可能引发传统细胞病理学向数字和计算细胞病理学的重大范式转变,其中主要功能将由人工智能系统执行。