Suppr超能文献

基于深度学习的甲状腺细胞学辅助筛查和检测。

Deep-Learning-Based Screening and Ancillary Testing for Thyroid Cytopathology.

机构信息

I-Medata AI Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel; Department of Pathology, Duke University Medical Center, Durham, North Carolina.

Department of Pathology, Duke University Medical Center, Durham, North Carolina.

出版信息

Am J Pathol. 2023 Sep;193(9):1185-1194. doi: 10.1016/j.ajpath.2023.05.011.

Abstract

Thyroid cancer is the most common malignant endocrine tumor. The key test to assess preoperative risk of malignancy is cytologic evaluation of fine-needle aspiration biopsies (FNABs). The evaluation findings can often be indeterminate, leading to unnecessary surgery for benign post-surgical diagnoses. We have developed a deep-learning algorithm to analyze thyroid FNAB whole-slide images (WSIs). We show, on the largest reported data set of thyroid FNAB WSIs, clinical-grade performance in the screening of determinate cases and indications for its use as an ancillary test to disambiguate indeterminate cases. The algorithm screened and definitively classified 45.1% (130/288) of the WSIs as either benign or malignant with risk of malignancy rates of 2.7% and 94.7%, respectively. It reduced the number of indeterminate cases (N = 108) by reclassifying 21.3% (N = 23) as benign with a resultant risk of malignancy rate of 1.8%. Similar results were reproduced using a data set of consecutive FNABs collected during an entire calendar year, achieving clinically acceptable margins of error for thyroid FNAB classification.

摘要

甲状腺癌是最常见的恶性内分泌肿瘤。评估术前恶性风险的关键检验是细针穿刺抽吸活检(FNAB)的细胞学评估。评估结果往往不确定,导致良性术后诊断的不必要手术。我们已经开发了一种深度学习算法来分析甲状腺 FNAB 全幻灯片图像(WSI)。我们在最大的甲状腺 FNAB WSI 报告数据集中展示了其在确定性病例筛查中的临床级性能,并表明其可作为辅助检验来消除不确定病例的指示。该算法筛选并明确分类了 45.1%(130/288)的 WSI 为良性或恶性,恶性风险率分别为 2.7%和 94.7%。它通过重新分类 21.3%(N=23)为良性,将不确定病例的数量减少了 21.3%(N=23),从而使恶性风险率降至 1.8%。使用一整年连续收集的 FNAB 数据集复制了类似的结果,实现了甲状腺 FNAB 分类的临床可接受的误差幅度。

相似文献

1
Deep-Learning-Based Screening and Ancillary Testing for Thyroid Cytopathology.
Am J Pathol. 2023 Sep;193(9):1185-1194. doi: 10.1016/j.ajpath.2023.05.011.
2
Application of a machine learning algorithm to predict malignancy in thyroid cytopathology.
Cancer Cytopathol. 2020 Apr;128(4):287-295. doi: 10.1002/cncy.22238. Epub 2020 Feb 3.
4
A Large Thyroid Fine Needle Aspiration Biopsy Cohort with Long-Term Population-Based Follow-Up.
Thyroid. 2021 Jul;31(7):1086-1095. doi: 10.1089/thy.2020.0689. Epub 2021 Jan 29.
5
Fine-needle aspiration biopsies in the management of indeterminate follicular and Hurthle cell thyroid lesions.
Otolaryngol Head Neck Surg. 2009 May;140(5):715-9. doi: 10.1016/j.otohns.2009.01.022. Epub 2009 Mar 12.
6
Pediatric thyroid FNA biopsy: Outcomes and impact on management over 24 years at a tertiary care center.
Cancer Cytopathol. 2016 Nov;124(11):801-810. doi: 10.1002/cncy.21750. Epub 2016 Jul 14.
9
Use of Machine Learning-Based Software for the Screening of Thyroid Cytopathology Whole Slide Images.
Arch Pathol Lab Med. 2022 Jul 1;146(7):872-878. doi: 10.5858/arpa.2020-0712-OA.

引用本文的文献

本文引用的文献

1
Radial Basis Function Artificial Neural Network for the Investigation of Thyroid Cytological Lesions.
J Thyroid Res. 2020 Nov 24;2020:5464787. doi: 10.1155/2020/5464787. eCollection 2020.
2
Machine-learning-based multiple abnormality prediction with large-scale chest computed tomography volumes.
Med Image Anal. 2021 Jan;67:101857. doi: 10.1016/j.media.2020.101857. Epub 2020 Oct 9.
3
Weakly supervised instance learning for thyroid malignancy prediction from whole slide cytopathology images.
Med Image Anal. 2021 Jan;67:101814. doi: 10.1016/j.media.2020.101814. Epub 2020 Sep 25.
5
Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study.
Lancet Oncol. 2020 Feb;21(2):233-241. doi: 10.1016/S1470-2045(19)30739-9. Epub 2020 Jan 8.
6
Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks.
Nat Med. 2020 Jan;26(1):52-58. doi: 10.1038/s41591-019-0715-9. Epub 2020 Jan 6.
7
Deep learning-based classification of mesothelioma improves prediction of patient outcome.
Nat Med. 2019 Oct;25(10):1519-1525. doi: 10.1038/s41591-019-0583-3. Epub 2019 Oct 7.
8
Clinical-grade computational pathology using weakly supervised deep learning on whole slide images.
Nat Med. 2019 Aug;25(8):1301-1309. doi: 10.1038/s41591-019-0508-1. Epub 2019 Jul 15.
9
Artificial intelligence in cytopathology: a review of the literature and overview of commercial landscape.
J Am Soc Cytopathol. 2019 Jul-Aug;8(4):230-241. doi: 10.1016/j.jasc.2019.03.003. Epub 2019 Mar 25.
10
Automating the Paris System for urine cytopathology-A hybrid deep-learning and morphometric approach.
Cancer Cytopathol. 2019 Feb;127(2):98-115. doi: 10.1002/cncy.22099. Epub 2019 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验