Suppr超能文献

人工智能在腹盆腔横断面放射影像学诊断中的辅助作用:系统评价方案。

Artificial intelligence as a diagnostic aid in cross-sectional radiological imaging of the abdominopelvic cavity: a protocol for a systematic review.

机构信息

Centre for Surgical Research, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK

Centre for Surgical Research, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.

出版信息

BMJ Open. 2021 Oct 20;11(10):e054411. doi: 10.1136/bmjopen-2021-054411.

Abstract

INTRODUCTION

The application of artificial intelligence (AI) technologies as a diagnostic aid in healthcare is increasing. Benefits include applications to improve health systems, such as rapid and accurate interpretation of medical images. This may improve the performance of diagnostic, prognostic and management decisions. While a large amount of work has been undertaken discussing the role of AI little is understood regarding the performance of such applications in the clinical setting. This systematic review aims to critically appraise the diagnostic performance of AI algorithms to identify disease from cross-sectional radiological images of the abdominopelvic cavity, to identify current limitations and inform future research.

METHODS AND ANALYSIS

A systematic search will be conducted on Medline, EMBASE and the Cochrane Central Register of Controlled Trials to identify relevant studies. Primary studies where AI-based technologies have been used as a diagnostic aid in cross-sectional radiological images of the abdominopelvic cavity will be included. Diagnostic accuracy of AI models, including reported sensitivity, specificity, predictive values, likelihood ratios and the area under the receiver operating characteristic curve will be examined and compared with standard practice. Risk of bias of included studies will be assessed using the QUADAS-2 tool. Findings will be reported according to the Synthesis Without Meta-analysis guidelines.

ETHICS AND DISSEMINATION

No ethical approval is required as primary data will not be collected. The results will inform further research studies in this field. Findings will be disseminated at relevant conferences, on social media and published in a peer-reviewed journal.

PROSPERO REGISTRATION NUMBER

CRD42021237249.

摘要

简介

人工智能(AI)技术在医疗保健领域作为诊断辅助工具的应用正在增加。其益处包括应用于改善医疗系统,例如快速准确地解释医学图像。这可能会提高诊断、预后和管理决策的性能。虽然已经进行了大量工作来讨论 AI 的作用,但对于此类应用在临床环境中的性能却知之甚少。本系统评价旨在批判性地评估 AI 算法从腹部盆腔的横截面放射图像中识别疾病的诊断性能,以确定当前的局限性并为未来的研究提供信息。

方法和分析

将在 Medline、EMBASE 和 Cochrane 对照试验中心注册库中进行系统检索,以确定相关研究。将包括使用基于 AI 的技术作为腹部盆腔横截面放射图像的诊断辅助工具的主要研究。将检查和比较 AI 模型的诊断准确性,包括报告的灵敏度、特异性、预测值、似然比和接收者操作特征曲线下的面积,并与标准实践进行比较。将使用 QUADAS-2 工具评估纳入研究的偏倚风险。根据无荟萃分析综合指南报告研究结果。

伦理和传播

由于不会收集原始数据,因此无需进行伦理批准。研究结果将为该领域的进一步研究提供信息。研究结果将在相关会议上、社交媒体上和在同行评审期刊上发表。

PROSPERO 注册号:CRD42021237249。

相似文献

4
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
8
Artificial intelligence for detecting keratoconus.人工智能在圆锥角膜检测中的应用。
Cochrane Database Syst Rev. 2023 Nov 15;11(11):CD014911. doi: 10.1002/14651858.CD014911.pub2.

本文引用的文献

6
The impact of machine learning on patient care: A systematic review.机器学习对患者护理的影响:系统评价。
Artif Intell Med. 2020 Mar;103:101785. doi: 10.1016/j.artmed.2019.101785. Epub 2019 Dec 31.
7
Artificial intelligence in abdominal aortic aneurysm.人工智能在腹主动脉瘤中的应用。
J Vasc Surg. 2020 Jul;72(1):321-333.e1. doi: 10.1016/j.jvs.2019.12.026. Epub 2020 Feb 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验