Department of Neurology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
Philips Research, Philips Innovation Campus, Bangalore, India.
BMJ Open. 2021 Mar 10;11(3):e043665. doi: 10.1136/bmjopen-2020-043665.
The use of artificial intelligence (AI) to support the diagnosis of acute ischaemic stroke (AIS) could improve patient outcomes and facilitate accurate tissue and vessel assessment. However, the evidence in published AI studies is inadequate and difficult to interpret which reduces the accountability of the diagnostic results in clinical settings. This study protocol describes a rigorous systematic review of the accuracy of AI in the diagnosis of AIS and detection of large-vessel occlusions (LVOs).
We will perform a systematic review and meta-analysis of the performance of AI models for diagnosing AIS and detecting LVOs. We will adhere to the Preferred Reporting Items for Systematic Reviews and Meta-analyses Protocols guidelines. Literature searches will be conducted in eight databases. For data screening and extraction, two reviewers will use a modified Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies checklist. We will assess the included studies using the Quality Assessment of Diagnostic Accuracy Studies guidelines. We will conduct a meta-analysis if sufficient data are available. We will use hierarchical summary receiver operating characteristic curves to estimate the summary operating points, including the pooled sensitivity and specificity, with 95% CIs, if pooling is appropriate. Furthermore, if sufficient data are available, we will use Grading of Recommendations, Assessment, Development and Evaluations profiler software to summarise the main findings of the systematic review, as a summary of results.
There are no ethical considerations associated with this study protocol, as the systematic review focuses on the examination of secondary data. The systematic review results will be used to report on the accuracy, completeness and standard procedures of the included studies. We will disseminate our findings by publishing our analysis in a peer-reviewed journal and, if required, we will communicate with the stakeholders of the studies and bibliographic databases.
CRD42020179652.
人工智能(AI)在支持急性缺血性脑卒中(AIS)诊断中的应用可以改善患者的预后,并促进对组织和血管的准确评估。然而,已发表的 AI 研究中的证据不足且难以解释,这降低了诊断结果在临床环境中的可信度。本研究方案描述了一项关于 AI 诊断 AIS 和检测大血管闭塞(LVOs)准确性的严格系统评价。
我们将对用于诊断 AIS 和检测 LVOs 的 AI 模型的性能进行系统评价和荟萃分析。我们将遵循系统评价和荟萃分析报告的首选条目(PRISMA)协议指南。文献检索将在八个数据库中进行。对于数据筛选和提取,两名评审员将使用经过修改的预测模型研究的批判性评价和数据提取清单。我们将使用诊断准确性研究的质量评估指南评估纳入的研究。如果有足够的数据,我们将进行荟萃分析。如果数据充足,我们将使用推荐评估、发展和评估(GRADE)软件来总结系统评价的主要发现,作为结果的总结。
本研究方案没有伦理考虑,因为系统评价侧重于对二级数据的检查。系统评价结果将用于报告纳入研究的准确性、完整性和标准程序。我们将通过在同行评议的期刊上发表我们的分析,以及在必要时与研究利益相关者和文献数据库进行沟通,来传播我们的发现。
PROSPERO 注册号:CRD42020179652。