Suppr超能文献

基于生物信息学分析鉴定结核病的枢纽基因

Identification of Hub Genes in Tuberculosis via Bioinformatics Analysis.

机构信息

Medical College of Soochow University, Soochow University, 199 Renai Road, Suzhou 215123, China.

Department of Laboratory Medicine, Minhang Hospital, Fudan University, China.

出版信息

Comput Math Methods Med. 2021 Oct 11;2021:8159879. doi: 10.1155/2021/8159879. eCollection 2021.

Abstract

BACKGROUND

Tuberculosis (TB) is a serious chronic bacterial infection caused by Mycobacterium tuberculosis (MTB). It is one of the deadliest diseases in the world and a heavy burden for people all over the world. However, the hub genes involved in the host response remain largely unclear.

METHODS

The data set GSE11199 was studied to clarify the potential gene network and signal transduction pathway in TB. The subjects were divided into latent tuberculosis and pulmonary tuberculosis, and the distribution of differentially expressed genes (DEGs) was analyzed between them using GEO2R. We verified the enriched process and pathway of DEGs by making use of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). The construction of protein-protein interaction (PPI) network of DEGs was achieved through making use of the Search Tool for the Retrieval of Interacting Genes (STRING), aiming at identifying hub genes. Then, the hub gene expression level in latent and pulmonary tuberculosis was verified by a boxplot. Finally, through making use of Gene Set Enrichment Analysis (GSEA), we further analyzed the pathways related to DEGs in the data set GSE11199 to show the changing pattern between latent and pulmonary tuberculosis.

RESULTS

We identified 98 DEGs in total in the data set GSE11199, 91 genes upregulated and 7 genes downregulated included. The enrichment of GO and KEGG pathways demonstrated that upregulated DEGs were mainly abundant in cytokine-mediated signaling pathway, response to interferon-gamma, endoplasmic reticulum lumen, beta-galactosidase activity, measles, JAK-STAT signaling pathway, cytokine-cytokine receptor interaction, etc. Based on the PPI network, we obtained 4 hub genes with a higher degree, namely, CTLA4, GZMB, GZMA, and PRF1. The box plot showed that these 4 hub gene expression levels in the pulmonary tuberculosis group were higher than those in the latent group. Finally, through Gene Set Enrichment Analysis (GSEA), it was concluded that DEGs were largely associated with proteasome and primary immunodeficiency.

CONCLUSIONS

This study reveals the coordination of pathogenic genes during TB infection and offers the diagnosis of TB a promising genome. These hub genes also provide new directions for the development of latent molecular targets for TB treatment.

摘要

背景

结核病(TB)是由结核分枝杆菌(MTB)引起的一种严重的慢性细菌性感染。它是世界上最致命的疾病之一,也是全世界人民的沉重负担。然而,宿主反应中涉及的关键基因在很大程度上仍不清楚。

方法

研究了数据集 GSE11199,以阐明 TB 中潜在的基因网络和信号转导途径。将受试者分为潜伏性结核病和肺结核,并使用 GEO2R 分析它们之间差异表达基因(DEGs)的分布。我们利用京都基因与基因组百科全书(KEGG)和基因本体论(GO)来验证 DEGs 的富集过程和途径。通过使用搜索工具检索相互作用基因(STRING)构建 DEGs 的蛋白质-蛋白质相互作用(PPI)网络,旨在识别关键基因。然后,通过箱线图验证潜伏性和肺结核中关键基因的表达水平。最后,通过基因集富集分析(GSEA),我们进一步分析了数据集 GSE11199 中与 DEGs 相关的途径,以显示潜伏性和肺结核之间的变化模式。

结果

我们总共在数据集 GSE11199 中鉴定出 98 个 DEGs,其中 91 个上调,7 个下调。GO 和 KEGG 途径的富集表明,上调的 DEGs 主要富集在细胞因子介导的信号通路、干扰素-γ反应、内质网腔、β-半乳糖苷酶活性、麻疹、JAK-STAT 信号通路、细胞因子-细胞因子受体相互作用等途径中。基于 PPI 网络,我们获得了 4 个具有较高程度的关键基因,即 CTLA4、GZMB、GZMA 和 PRF1。箱线图显示,这 4 个关键基因在肺结核组中的表达水平高于潜伏组。最后,通过基因集富集分析(GSEA)得出结论,DEGs 与蛋白酶体和原发性免疫缺陷密切相关。

结论

本研究揭示了 TB 感染过程中致病基因的协调作用,为 TB 的诊断提供了有希望的基因组。这些关键基因也为开发潜伏性 TB 治疗的分子靶点提供了新的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d01/8523273/2b63a8ee51f1/CMMM2021-8159879.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验