Suppr超能文献

即时分析物定量和数字读出 基于细胞裂解液的无细胞生物传感器与个人血糖仪接口。

Point-of-Care Analyte Quantification and Digital Readout Lysate-Based Cell-Free Biosensors Interfaced with Personal Glucose Monitors.

机构信息

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States.

出版信息

ACS Synth Biol. 2021 Nov 19;10(11):2862-2869. doi: 10.1021/acssynbio.1c00282. Epub 2021 Oct 21.

Abstract

Field-deployable diagnostics based on cell-free systems have advanced greatly, but on-site quantification of target analytes remains a challenge. Here we demonstrate that lysate-based cell-free biosensors coupled to a personal glucose monitor (PGM) can enable on-site analyte quantification, with the potential for straightforward reconfigurability to diverse types of analytes. We show that analyte-responsive regulators of transcription and translation can modulate the production of the reporter enzyme β-galactosidase, which in turn converts lactose into glucose for PGM quantification. Because glycolysis is active in the lysate and would readily deplete converted glucose, we decoupled enzyme production and glucose conversion to increase the end point signal output. However, this lysate metabolism did allow for one-pot removal of glucose present in complex samples (like human serum) without confounding target quantification. Taken together, our results show that integrating lysate-based cell-free biosensors with PGMs enables accessible target detection and quantification at the point of need.

摘要

基于无细胞系统的现场诊断技术已经取得了很大进展,但目标分析物的现场定量仍然是一个挑战。在这里,我们证明了基于裂解物的无细胞生物传感器与个人血糖仪 (PGM) 相结合,可以实现现场分析物的定量,并且具有针对不同类型分析物进行简单重新配置的潜力。我们表明,转录和翻译的反应调节剂可以调节报告酶β-半乳糖苷酶的产生,β-半乳糖苷酶反过来将乳糖转化为葡萄糖,以便 PGM 进行定量。因为在裂解物中糖酵解是活跃的,并且会轻易耗尽转化的葡萄糖,所以我们将酶的产生和葡萄糖的转化解偶联,以增加终点信号输出。然而,这种裂解物代谢确实允许在不干扰目标定量的情况下,一次性去除复杂样品(如人血清)中存在的葡萄糖。总之,我们的结果表明,将基于裂解物的无细胞生物传感器与 PGM 集成,可以在需要的地点实现易于使用的目标检测和定量。

相似文献

1
Point-of-Care Analyte Quantification and Digital Readout Lysate-Based Cell-Free Biosensors Interfaced with Personal Glucose Monitors.
ACS Synth Biol. 2021 Nov 19;10(11):2862-2869. doi: 10.1021/acssynbio.1c00282. Epub 2021 Oct 21.
2
Rapid and Scalable Preparation of Bacterial Lysates for Cell-Free Gene Expression.
ACS Synth Biol. 2017 Dec 15;6(12):2198-2208. doi: 10.1021/acssynbio.7b00253. Epub 2017 Aug 21.
3
The application of personal glucose meters as universal point-of-care diagnostic tools.
Biosens Bioelectron. 2020 Jan 15;148:111835. doi: 10.1016/j.bios.2019.111835. Epub 2019 Nov 2.
4
A biosensor for the determination of β-galactosidase activity: a different viewpoint on biosensors.
Artif Cells Blood Substit Immobil Biotechnol. 2011 Oct;39(5):281-8. doi: 10.3109/10731199.2011.560119. Epub 2011 Feb 25.
6
Influence of catabolite repression and inducer exclusion on the bistable behavior of the lac operon.
Biophys J. 2004 Mar;86(3):1282-92. doi: 10.1016/S0006-3495(04)74202-2.
7
Expanding the Cell-Free Reporter Protein Toolbox by Employing a Split mNeonGreen System to Reduce Protein Synthesis Workload.
ACS Synth Biol. 2024 Jun 21;13(6):1663-1668. doi: 10.1021/acssynbio.3c00752. Epub 2024 Jun 5.
8
Engineered Biosensors in an Encapsulated and Deployable System for Environmental Chemical Detection.
ACS Sens. 2022 Sep 23;7(9):2589-2596. doi: 10.1021/acssensors.2c00775. Epub 2022 Sep 7.
9
A mutant Ebg enzyme that converts lactose into an inducer of the lac operon.
J Bacteriol. 1980 Jun;142(3):1036-9. doi: 10.1128/jb.142.3.1036-1039.1980.
10
Targeted Growth Medium Dropouts Promote Aromatic Compound Synthesis in Crude Cell-Free Systems.
ACS Synth Biol. 2020 Nov 20;9(11):2986-2997. doi: 10.1021/acssynbio.9b00524. Epub 2020 Oct 12.

引用本文的文献

1
Multidomain Molecular Sensor Devices, Systems, and Algorithms for Improved Physiological Monitoring.
Micromachines (Basel). 2025 Jul 31;16(8):900. doi: 10.3390/mi16080900.
2
Rapid and Finely-Tuned Expression for Deployable Sensing Applications.
Adv Biochem Eng Biotechnol. 2023;186:141-161. doi: 10.1007/10_2023_223.
3
Low-cost, point-of-care biomarker quantification.
Curr Opin Biotechnol. 2022 Aug;76:102738. doi: 10.1016/j.copbio.2022.102738. Epub 2022 Jun 6.
4
Advances, Challenges and Future Trends of Cell-Free Transcription-Translation Biosensors.
Biosensors (Basel). 2022 May 10;12(5):318. doi: 10.3390/bios12050318.

本文引用的文献

1
Protocell arrays for simultaneous detection of diverse analytes.
Nat Commun. 2021 Sep 29;12(1):5724. doi: 10.1038/s41467-021-25989-3.
2
Metabolic Dynamics in -Based Cell-Free Systems.
ACS Synth Biol. 2021 Sep 17;10(9):2252-2265. doi: 10.1021/acssynbio.1c00167. Epub 2021 Sep 3.
3
A glucose meter interface for point-of-care gene circuit-based diagnostics.
Nat Commun. 2021 Feb 1;12(1):724. doi: 10.1038/s41467-020-20639-6.
4
Creating CRISPR-responsive smart materials for diagnostics and programmable cargo release.
Nat Protoc. 2020 Sep;15(9):3030-3063. doi: 10.1038/s41596-020-0367-8. Epub 2020 Aug 17.
5
Cell-free biosensors for rapid detection of water contaminants.
Nat Biotechnol. 2020 Dec;38(12):1451-1459. doi: 10.1038/s41587-020-0571-7. Epub 2020 Jul 6.
6
Assay Techniques and Test Development for COVID-19 Diagnosis.
ACS Cent Sci. 2020 May 27;6(5):591-605. doi: 10.1021/acscentsci.0c00501. Epub 2020 Apr 30.
7
Metabolic Profiling of Cell-Free Expression Systems for Process Optimization.
Ind Eng Chem Res. 2019 Dec 18;58(50):22472-22482. doi: 10.1021/acs.iecr.9b03565. Epub 2019 Sep 13.
8
Point-of-Use Detection of Environmental Fluoride a Cell-Free Riboswitch-Based Biosensor.
ACS Synth Biol. 2020 Jan 17;9(1):10-18. doi: 10.1021/acssynbio.9b00347. Epub 2019 Dec 20.
9
Design of a Transcriptional Biosensor for the Portable, On-Demand Detection of Cyanuric Acid.
ACS Synth Biol. 2020 Jan 17;9(1):84-94. doi: 10.1021/acssynbio.9b00348. Epub 2019 Dec 26.
10
Cell-free gene expression: an expanded repertoire of applications.
Nat Rev Genet. 2020 Mar;21(3):151-170. doi: 10.1038/s41576-019-0186-3. Epub 2019 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验