Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
Cell. 2021 Oct 28;184(22):5653-5669.e25. doi: 10.1016/j.cell.2021.10.002. Epub 2021 Oct 20.
Cells repair DNA double-strand breaks (DSBs) through a complex set of pathways critical for maintaining genomic integrity. To systematically map these pathways, we developed a high-throughput screening approach called Repair-seq that measures the effects of thousands of genetic perturbations on mutations introduced at targeted DNA lesions. Using Repair-seq, we profiled DSB repair products induced by two programmable nucleases (Cas9 and Cas12a) in the presence or absence of oligonucleotides for homology-directed repair (HDR) after knockdown of 476 genes involved in DSB repair or associated processes. The resulting data enabled principled, data-driven inference of DSB end joining and HDR pathways. Systematic interrogation of this data uncovered unexpected relationships among DSB repair genes and demonstrated that repair outcomes with superficially similar sequence architectures can have markedly different genetic dependencies. This work provides a foundation for mapping DNA repair pathways and for optimizing genome editing across diverse modalities.
细胞通过一套复杂的途径修复 DNA 双链断裂 (DSB),这些途径对于维持基因组完整性至关重要。为了系统地绘制这些途径,我们开发了一种称为 Repair-seq 的高通量筛选方法,该方法可测量数千种遗传扰动对靶向 DNA 损伤处引入的突变的影响。使用 Repair-seq,我们在敲低 476 个涉及 DSB 修复或相关过程的基因后,在存在或不存在用于同源定向修复 (HDR) 的寡核苷酸的情况下,对两种可编程核酸酶 (Cas9 和 Cas12a) 诱导的 DSB 修复产物进行了分析。由此产生的数据使我们能够对 DSB 末端连接和 HDR 途径进行基于原理和数据驱动的推断。对这些数据的系统研究揭示了 DSB 修复基因之间出人意料的关系,并表明具有表面上相似序列结构的修复结果可能具有明显不同的遗传依赖性。这项工作为绘制 DNA 修复途径以及在各种模式下优化基因组编辑提供了基础。
Cell. 2021-10-28
J Zhejiang Univ Sci B. 2021-1-15
Biochem Cell Biol. 2017-4
Trends Genet. 2021-7
Sci Adv. 2025-8-22
Animals (Basel). 2025-7-22
Nat Commun. 2025-7-2
Nature. 2025-6-25
iScience. 2025-5-22
Nat Rev Mol Cell Biol. 2022-2
Curr Opin Genet Dev. 2021-12
PLoS Genet. 2020-10-15
Nat Biotechnol. 2021-1
Cell. 2020-7-23