Suppr超能文献

利用社交媒体量化药物不良反应的严重程度:网络分析

Quantifying the Severity of Adverse Drug Reactions Using Social Media: Network Analysis.

作者信息

Lavertu Adam, Hamamsy Tymor, Altman Russ B

机构信息

Biomedical Informatics Training Program, Stanford University, Stanford, CA, United States.

Department of Biomedical Data Science, Stanford University, Stanford, CA, United States.

出版信息

J Med Internet Res. 2021 Oct 21;23(10):e27714. doi: 10.2196/27714.

Abstract

BACKGROUND

Adverse drug reactions (ADRs) affect the health of hundreds of thousands of individuals annually in the United States, with associated costs of hundreds of billions of dollars. The monitoring and analysis of the severity of ADRs is limited by the current qualitative and categorical systems of severity classification. Previous efforts have generated quantitative estimates for a subset of ADRs but were limited in scope because of the time and costs associated with the efforts.

OBJECTIVE

The aim of this study is to increase the number of ADRs for which there are quantitative severity estimates while improving the quality of these severity estimates.

METHODS

We present a semisupervised approach that estimates ADR severity by using social media word embeddings to construct a lexical network of ADRs and perform label propagation. We used this method to estimate the severity of 28,113 ADRs, representing 12,198 unique ADR concepts from the Medical Dictionary for Regulatory Activities.

RESULTS

Our Severity of Adverse Events Derived from Reddit (SAEDR) scores have good correlations with real-world outcomes. The SAEDR scores had Spearman correlations of 0.595, 0.633, and -0.748 for death, serious outcome, and no outcome, respectively, with ADR case outcomes in the Food and Drug Administration Adverse Event Reporting System. We investigated different methods for defining initial seed term sets and evaluated their impact on the severity estimates. We analyzed severity distributions for ADRs based on their appearance in boxed warning drug label sections, as well as for ADRs with sex-specific associations. We found that ADRs discovered in the postmarketing period had significantly greater severity than those discovered during the clinical trial (P<.001). We created quantitative drug-risk profile (DRIP) scores for 968 drugs that had a Spearman correlation of 0.377 with drugs ranked by the Food and Drug Administration Adverse Event Reporting System cases resulting in death, where the given drug was the primary suspect.

CONCLUSIONS

Our SAEDR and DRIP scores are well correlated with the real-world outcomes of the entities they represent and have demonstrated utility in pharmacovigilance research. We make the SAEDR scores for 12,198 ADRs and the DRIP scores for 968 drugs publicly available to enable more quantitative analysis of pharmacovigilance data.

摘要

背景

在美国,药物不良反应(ADR)每年影响着数十万人的健康,相关成本高达数千亿美元。当前的定性和分类严重程度分类系统限制了对ADR严重程度的监测和分析。以往的努力对一部分ADR产生了定量估计,但由于相关的时间和成本,范围有限。

目的

本研究的目的是增加有定量严重程度估计的ADR数量,同时提高这些严重程度估计的质量。

方法

我们提出了一种半监督方法,通过使用社交媒体词嵌入来构建ADR的词汇网络并进行标签传播,从而估计ADR严重程度。我们使用这种方法来估计28113例ADR的严重程度,这些ADR代表了来自《药品监管活动医学词典》中的12198个独特的ADR概念。

结果

我们的源自Reddit的不良事件严重程度(SAEDR)评分与实际结果具有良好的相关性。在食品药品监督管理局不良事件报告系统中,SAEDR评分与ADR病例结果的死亡、严重后果和无后果的斯皮尔曼相关性分别为0.595、0.633和 -0.748。我们研究了定义初始种子词集的不同方法,并评估了它们对严重程度估计的影响。我们基于ADR在盒装警告药品标签部分的出现情况,以及具有性别特异性关联的ADR,分析了ADR的严重程度分布。我们发现,上市后发现的ADR的严重程度明显高于临床试验期间发现的ADR(P<0.001)。我们为968种药物创建了定量药物风险概况(DRIP)评分,其与食品药品监督管理局不良事件报告系统中导致死亡的病例所排名的药物(给定药物为主要嫌疑药物)的斯皮尔曼相关性为0.377。

结论

我们的SAEDR和DRIP评分与它们所代表实体的实际结果密切相关,并已在药物警戒研究中显示出实用性。我们公开了12198个ADR的SAEDR评分和968种药物的DRIP评分,以便对药物警戒数据进行更多的定量分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bccc/8569532/44f93527617d/jmir_v23i10e27714_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验