Suppr超能文献

通过直接墨水书写实现三维微结构的位点选择性生物功能化

Site-Selective Biofunctionalization of 3D Microstructures Via Direct Ink Writing.

作者信息

Mathew George, Lemma Enrico Domenico, Fontana Dalila, Zhong Chunting, Rainer Alberto, Sekula-Neuner Sylwia, Aghassi-Hagmann Jasmin, Hirtz Michael, Berganza Eider

机构信息

Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany.

Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany.

出版信息

Small. 2024 Dec;20(51):e2404429. doi: 10.1002/smll.202404429. Epub 2024 Sep 18.

Abstract

Two-photon lithography has revolutionized multi-photon 3D laser printing, enabling precise fabrication of micro- and nanoscale structures. Despite many advancements, challenges still persist, particularly in biofunctionalization of 3D microstructures. This study introduces a novel approach combining two-photon lithography with scanning probe lithography for post-functionalization of 3D microstructures overcoming limitations in achieving spatially controlled biomolecule distribution. The method utilizes a diverse range of biomolecule inks, including phospholipids, and two different proteins, introducing high spatial resolution and distinct functionalization on separate areas of the same microstructure. The surfaces of 3D microstructures are treated using bovine serum albumin and/or 3-(Glycidyloxypropyl)trimethoxysilane (GPTMS) to enhance ink retention. The study further demonstrates different strategies to create binding sites for cells by integrating different biomolecules, showcasing the potential for customized 3D cell microenvironments. Specific cell adhesion onto functionalized 3D microscaffolds is demonstrated, which paves the way for diverse applications in tissue engineering, biointerfacing with electronic devices and biomimetic modeling.

摘要

双光子光刻技术彻底改变了多光子3D激光打印技术,能够精确制造微米和纳米级结构。尽管取得了许多进展,但挑战依然存在,特别是在3D微结构的生物功能化方面。本研究引入了一种将双光子光刻技术与扫描探针光刻技术相结合的新方法,用于3D微结构的后功能化,克服了在实现空间控制的生物分子分布方面的局限性。该方法利用了多种生物分子墨水,包括磷脂和两种不同的蛋白质,在同一微结构的不同区域引入了高空间分辨率和独特的功能化。使用牛血清白蛋白和/或3-(环氧丙氧基丙基)三甲氧基硅烷(GPTMS)处理3D微结构的表面,以增强墨水保留。该研究进一步展示了通过整合不同生物分子来创建细胞结合位点的不同策略,展示了定制3D细胞微环境的潜力。研究证明了特定细胞在功能化3D微支架上的粘附,这为组织工程、与电子设备的生物界面和仿生建模中的各种应用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df6d/11657036/adb806fa5d79/SMLL-20-2404429-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验