Suppr超能文献

将生物功能分子整合到3D打印的聚合物微/纳米结构中。

Integration of Biofunctional Molecules into 3D-Printed Polymeric Micro-/Nanostructures.

作者信息

Berganza Eider, Apte Gurunath, Vasantham Srivatsan K, Nguyen Thi-Huong, Hirtz Michael

机构信息

Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.

Institute for Bioprocessing and Analytical Measurement Techniques (iba), 37308 Heilbad Heiligenstadt, Germany.

出版信息

Polymers (Basel). 2022 Mar 25;14(7):1327. doi: 10.3390/polym14071327.

Abstract

Three-dimensional printing at the micro-/nanoscale represents a new challenge in research and development to achieve direct printing down to nanometre-sized objects. Here, FluidFM, a combination of microfluidics with atomic force microscopy, offers attractive options to fabricate hierarchical polymer structures at different scales. However, little is known about the effect of the substrate on the printed structures and the integration of (bio)functional groups into the polymer inks. In this study, we printed micro-/nanostructures on surfaces with different wetting properties, and integrated molecules with different functional groups (rhodamine as a fluorescent label and biotin as a binding tag for proteins) into the base polymer ink. The substrate wetting properties strongly affected the printing results, in that the lateral feature sizes increased with increasing substrate hydrophilicity. Overall, ink modification only caused minor changes in the stiffness of the printed structures. This shows the generality of the approach, as significant changes in the mechanical properties on chemical functionalization could be confounders in bioapplications. The retained functionality of the obtained structures after UV curing was demonstrated by selective binding of streptavidin to the printed structures. The ability to incorporate binding tags to achieve specific interactions between relevant proteins and the fabricated micro-/nanostructures, without compromising the mechanical properties, paves a way for numerous bio and sensing applications. Additional flexibility is obtained by tuning the substrate properties for feature size control, and the option to obtain functionalized printed structures without post-processing procedures will contribute to the development of 3D printing for biological applications, using FluidFM and similar dispensing techniques.

摘要

微纳尺度的三维打印是研发中的一项新挑战,旨在实现直接打印出纳米级尺寸的物体。在此,FluidFM(一种将微流体与原子力显微镜相结合的技术)为在不同尺度上制造分层聚合物结构提供了有吸引力的选择。然而,关于基底对打印结构的影响以及(生物)官能团在聚合物油墨中的整合情况,人们了解甚少。在本研究中,我们在具有不同润湿性的表面上打印微纳结构,并将具有不同官能团的分子(罗丹明作为荧光标记,生物素作为蛋白质的结合标签)整合到基础聚合物油墨中。基底的润湿性对打印结果有很大影响,即横向特征尺寸随着基底亲水性的增加而增大。总体而言,油墨改性仅对打印结构的刚度产生微小变化。这表明了该方法的通用性,因为化学功能化后机械性能的显著变化可能会在生物应用中造成混淆。通过链霉亲和素与打印结构的选择性结合,证明了紫外光固化后所得结构保留了功能。在不影响机械性能的情况下,将结合标签整合以实现相关蛋白质与制造的微纳结构之间的特异性相互作用的能力为众多生物和传感应用铺平了道路。通过调整基底特性以控制特征尺寸可获得额外的灵活性,并且无需后处理程序即可获得功能化打印结构的选项将有助于使用FluidFM和类似的分配技术开发用于生物应用的3D打印。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c86b/9002480/a39177a9709d/polymers-14-01327-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验