Ramirez-Nava Jonathan, Martínez-Castrejón Mariana, García-Mesino Rocío Lley, López-Díaz Jazmin Alaide, Talavera-Mendoza Oscar, Sarmiento-Villagrana Alicia, Rojano Fernando, Hernández-Flores Giovanni
Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran vía Tropical No 20, Fracc. Las Playas, Acapulco 39390, Mexico.
Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Privada de Laurel No. 13, Col. El Roble, Acapulco 39640, Mexico.
Membranes (Basel). 2021 Sep 28;11(10):738. doi: 10.3390/membranes11100738.
Microbial fuel cells (MFCs) are electrochemical devices focused on bioenergy generation and organic matter removal carried out by microorganisms under anoxic environments. In these types of systems, the anodic oxidation reaction is catalyzed by anaerobic microorganisms, while the cathodic reduction reaction can be carried out biotically or abiotically. Membranes as separators in MFCs are the primary requirements for optimal electrochemical and microbiological performance. MFC configuration and operation are similar to those of proton-exchange membrane fuel cells (PEMFCs)-both having at least one anode and one cathode split by a membrane or separator. The Nafion 117 (NF-117) membrane, made from perfluorosulfonic acid, is a membrane used as a separator in PEMFCs. By analogy of the operation between electrochemical systems and MFCs, NF-117 membranes have been widely used as separators in MFCs. The main disadvantage of this type of membrane is its high cost; membranes in MFCs can represent up to 60% of the MFC's total cost. This is one of the challenges in scaling up MFCs: finding alternative membranes or separators with low cost and good electrochemical characteristics. The aim of this work is to critically review state-of-the-art membranes and separators used in MFCs. The scope of this review includes: (i) membrane functions in MFCs, (ii) most-used membranes, (iii) membrane cost and efficiency, and (iv) membrane-less MFCs. Currently, there are at least 20 different membranes or separators proposed and evaluated for MFCs, from basic salt bridges to advanced synthetic polymer-based membranes, including ceramic and unconventional separator materials. Studies focusing on either low cost or the use of natural polymers for proton-exchange membranes (PEM) are still scarce. Alternatively, in some works, MFCs have been operated without membranes; however, significant decrements in Coulombic efficiency were found. As the type of membrane affects the performance and total cost of MFCs, it is recommended that research efforts are increased in order to develop new, more economic membranes that exhibit favorable properties and allow for satisfactory cell performance at the same time. The current state of the art of membranes for MFCs addressed in this review will undoubtedly serve as a key insight for future research related to this topic.
微生物燃料电池(MFCs)是一种电化学装置,专注于在缺氧环境下由微生物进行生物能源生成和有机物去除。在这类系统中,阳极氧化反应由厌氧微生物催化,而阴极还原反应可以通过生物或非生物方式进行。MFCs中作为分离器的膜是实现最佳电化学和微生物性能的主要要求。MFC的配置和操作与质子交换膜燃料电池(PEMFCs)相似——两者都至少有一个阳极和一个阴极,由膜或分离器隔开。由全氟磺酸制成的Nafion 117(NF - 117)膜是一种用于PEMFCs的分离器膜。通过类比电化学系统和MFCs之间的操作,NF - 117膜已被广泛用作MFCs中的分离器。这类膜的主要缺点是成本高;MFCs中的膜成本可占MFC总成本的60%。这是扩大MFC规模面临的挑战之一:寻找具有低成本和良好电化学特性的替代膜或分离器。这项工作的目的是对MFCs中使用的最新膜和分离器进行批判性综述。本综述的范围包括:(i)MFCs中膜的功能,(ii)最常用的膜,(iii)膜成本和效率,以及(iv)无膜MFCs。目前,至少有20种不同的膜或分离器被提出并用于MFCs评估,从基本的盐桥到先进的基于合成聚合物的膜,包括陶瓷和非常规分离器材料。专注于低成本或使用天然聚合物制备质子交换膜(PEM)的研究仍然很少。另外,在一些研究中,MFCs在无膜的情况下运行;然而,发现库仑效率显著下降。由于膜的类型会影响MFCs的性能和总成本,建议加大研究力度,以开发新的、更经济的膜,这些膜具有良好的性能,同时能使电池性能令人满意。本综述中阐述的MFCs膜的当前技术水平无疑将为该主题的未来研究提供关键见解。