Kent Brayden, Rossa Carlos
Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, Ontario, Canada.
Med Biol Eng Comput. 2022 Jan;60(1):19-31. doi: 10.1007/s11517-021-02454-3. Epub 2021 Oct 22.
Some tumours may not be detected by ultrasound during biopsy, but recent evidence has shown that different tissues can be discerned by electric impedance. This paper explores the application of vibrotactile feedback in an electrode embedded needle to help classify tissue during fine-needle aspiration biopsy from bioimpedance measurements. The process uses electric impedance spectroscopy from 10 Hz to 349 kHz to fit the double-dispersion Cole model through the Newton-Raphson algorithm. A Naive Bayes classifier is then used on the equivalent circuit parameters to estimate the tissue at the needle tip. The method is validated through a series of experiments and user trials. The results show that the vibrotactile feedback is able to help the operator in determining the tissue the needle is in, suggesting that this may prove to be a useful supplement to the standard procedure used today. Graphical Abstract This paper explores the application of vibrotactile feedback for an electrode embedded needle to help classify tissue from electric impedance measurements. The data is fit to an equivalent circuit using Newton- Raphon's method. A Naive Bayes classifier is trained and later used in an experiment to estimate the tissue at the needle tip and provide an assigned vibrotacticle feedback to the user.
在活检过程中,一些肿瘤可能无法通过超声检测到,但最近的证据表明,不同组织可通过电阻抗加以辨别。本文探讨了在嵌入电极的针中应用振动触觉反馈,以在细针穿刺活检过程中根据生物阻抗测量结果帮助对组织进行分类。该过程使用从10赫兹到349千赫兹的电阻抗光谱,通过牛顿-拉夫逊算法拟合双色散科尔模型。然后在等效电路参数上使用朴素贝叶斯分类器来估计针尖处的组织。该方法通过一系列实验和用户试验得到验证。结果表明,振动触觉反馈能够帮助操作人员确定针所在的组织,这表明这可能被证明是对当今使用的标准程序的一种有用补充。图形摘要 本文探讨了在嵌入电极的针中应用振动触觉反馈,以根据电阻抗测量结果帮助对组织进行分类。使用牛顿-拉夫逊方法将数据拟合到等效电路。训练朴素贝叶斯分类器,随后在实验中用于估计针尖处的组织,并向用户提供指定的振动触觉反馈。