Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215-5491, United States of America.
Physiol Meas. 2018 May 22;39(5):055005. doi: 10.1088/1361-6579/aabb8c.
Needle EMG remains the standard clinical test for neuromuscular disease (NMD) assessment, but it only characterizes myofiber membrane depolarization. On the other hand, electrical impedance provides non-electrically active structural and compositional data of tissues. Here, we designed a prototype of needle electrode integrating electrical impedance and EMG measurement capabilities, the so-called I-EMG needle electrode.
We use finite element method models to study the impedance recording characteristics of I-EMG needle electrodes. The simulated electrical and mechanical design specifications are then manufactured to create a prototype of an I-EMG needle electrode. We pilot these new needle electrodes by conducting in vivo impedance measurements with muscle at rest on healthy wild-type (wt, n = 5) and muscular dystrophy (mdx, n = 5) mice. Comparisons between wt and mdx mice are performed using Mann-Whitney test, two-tailed, p < 0.05. The electrical characterization of the EMG electrode in the developed I-EMG needles was performed in vitro on saline solution and through EMG detection in wt animal at rest and during voluntary contractions.
Muscle impedance demonstrate good repeatability (p < 0.05 and p < 0.005 for resistance and reactance at 50 kHz, respectively) and agreement between different I-EMG needles. Impedance data allows us to discriminate between mdx and wt muscle (p < 0.05 and p < 0.005 for resistance and reactance at 10 kHz, respectively). EMG broadband noise power and peak amplitude using the I-EMG needle were similar to that of a commercial monopolar EMG needle. EMG recordings using the I-EMG needle measured electrical activity similar to a standard monopolar needle with muscle at rest and during voluntary contraction.
Needle I-EMG technology may offer the opportunity to enhance the diagnostic capability and quantification of NMD beyond that possible with either impedance or EMG techniques separately. Ultimately, needle I-EMG could serve as a new bedside tool to assess NMD without increasing the complexity or duration of the EMG test.
肌电图针仍然是神经肌肉疾病(NMD)评估的标准临床测试,但它只能描述肌纤维膜去极化。另一方面,电阻抗提供了组织的非电活性结构和组成数据。在这里,我们设计了一种集成电阻抗和肌电图测量功能的针电极原型,即所谓的 I-EMG 针电极。
我们使用有限元方法模型研究 I-EMG 针电极的阻抗记录特性。然后根据模拟的电气和机械设计规格制造出 I-EMG 针电极的原型。我们在健康野生型(wt,n=5)和肌肉营养不良症(mdx,n=5)小鼠的休息肌肉上进行体内阻抗测量,以初步测试这些新型针电极。使用 Mann-Whitney 检验(双侧,p<0.05)对 wt 和 mdx 小鼠进行比较。在盐溶液中对开发的 I-EMG 针中的 EMG 电极进行电特性测试,并在休息和自愿收缩期间对 wt 动物进行 EMG 检测。
肌肉阻抗具有良好的可重复性(在 50 kHz 时电阻和电抗的 p<0.05 和 p<0.005,分别),并且不同 I-EMG 针之间具有良好的一致性。阻抗数据可用于区分 mdx 和 wt 肌肉(在 10 kHz 时电阻和电抗的 p<0.05 和 p<0.005,分别)。使用 I-EMG 针的 EMG 宽带噪声功率和峰值幅度与商用单极 EMG 针相似。在休息和自愿收缩期间,使用 I-EMG 针测量的肌肉电活动与标准单极针相似。
针 I-EMG 技术可能有机会增强神经肌肉疾病的诊断能力和定量评估,而不仅仅是使用阻抗或肌电图技术单独实现。最终,针 I-EMG 可以作为一种新的床边工具,无需增加 EMG 测试的复杂性或持续时间,即可评估神经肌肉疾病。