Suppr超能文献

机器学习模型在中风后功能预后预测中的比较与解读

The Comparison and Interpretation of Machine-Learning Models in Post-Stroke Functional Outcome Prediction.

作者信息

Chang Shih-Chieh, Chu Chan-Lin, Chen Chih-Kuang, Chang Hsiang-Ning, Wong Alice M K, Chen Yueh-Peng, Pei Yu-Cheng

机构信息

Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan.

College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.

出版信息

Diagnostics (Basel). 2021 Sep 28;11(10):1784. doi: 10.3390/diagnostics11101784.

Abstract

Prediction of post-stroke functional outcomes is crucial for allocating medical resources. In this study, a total of 577 patients were enrolled in the Post-Acute Care-Cerebrovascular Disease (PAC-CVD) program, and 77 predictors were collected at admission. The outcome was whether a patient could achieve a Barthel Index (BI) score of >60 upon discharge. Eight machine-learning (ML) methods were applied, and their results were integrated by stacking method. The area under the curve (AUC) of the eight ML models ranged from 0.83 to 0.887, with random forest, stacking, logistic regression, and support vector machine demonstrating superior performance. The feature importance analysis indicated that the initial Berg Balance Test (BBS-I), initial BI (BI-I), and initial Concise Chinese Aphasia Test (CCAT-I) were the top three predictors of BI scores at discharge. The partial dependence plot (PDP) and individual conditional expectation (ICE) plot indicated that the predictors' ability to predict outcomes was the most pronounced within a specific value range (e.g., BBS-I < 40 and BI-I < 60). BI at discharge could be predicted by information collected at admission with the aid of various ML models, and the PDP and ICE plots indicated that the predictors could predict outcomes at a certain value range.

摘要

预测中风后的功能结局对于合理分配医疗资源至关重要。在本研究中,共有577名患者纳入急性后护理-脑血管疾病(PAC-CVD)项目,并在入院时收集了77个预测指标。结局指标为患者出院时巴氏指数(BI)评分是否>60。应用了八种机器学习(ML)方法,并通过堆叠法整合其结果。八个ML模型的曲线下面积(AUC)范围为0.83至0.887,随机森林、堆叠、逻辑回归和支持向量机表现出卓越性能。特征重要性分析表明,初始伯格平衡量表(BBS-I)、初始BI(BI-I)和初始汉语失语症简明检查量表(CCAT-I)是出院时BI评分的前三大预测指标。部分依赖图(PDP)和个体条件期望(ICE)图表明,预测指标在特定值范围内(如BBS-I<40和BI-I<60)预测结局的能力最为显著。借助各种ML模型,利用入院时收集的信息可以预测出院时的BI,PDP和ICE图表明预测指标在一定值范围内可以预测结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc57/8534424/160586fcebf0/diagnostics-11-01784-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验