Department of Medical Imaging, Taipei Medical University Hospital, No.250, Wu Hsing Street, Taipei, Taiwan.
Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
Eur Radiol Exp. 2024 May 15;8(1):59. doi: 10.1186/s41747-024-00455-z.
This study investigates the potential of diffusion tensor imaging (DTI) in identifying penumbral volume (PV) compared to the standard gadolinium-required perfusion-diffusion mismatch (PDM), utilizing a stack-based ensemble machine learning (ML) approach with enhanced explainability.
Sixteen male rats were subjected to middle cerebral artery occlusion. The penumbra was identified using PDM at 30 and 90 min after occlusion. We used 11 DTI-derived metrics and 14 distance-based features to train five voxel-wise ML models. The model predictions were integrated using stack-based ensemble techniques. ML-estimated and PDM-defined PVs were compared to evaluate model performance through volume similarity assessment, the Pearson correlation analysis, and Bland-Altman analysis. Feature importance was determined for explainability.
In the test rats, the ML-estimated median PV was 106.4 mL (interquartile range 44.6-157.3 mL), whereas the PDM-defined median PV was 102.0 mL (52.1-144.9 mL). These PVs had a volume similarity of 0.88 (0.79-0.96), a Pearson correlation coefficient of 0.93 (p < 0.001), and a Bland-Altman bias of 2.5 mL (2.4% of the mean PDM-defined PV), with 95% limits of agreement ranging from -44.9 to 49.9 mL. Among the features used for PV prediction, the mean diffusivity was the most important feature.
Our study confirmed that PV can be estimated using DTI metrics with a stack-based ensemble ML approach, yielding results comparable to the volume defined by the standard PDM. The model explainability enhanced its clinical relevance. Human studies are warranted to validate our findings.
The proposed DTI-based ML model can estimate PV without the need for contrast agent administration, offering a valuable option for patients with kidney dysfunction. It also can serve as an alternative if perfusion map interpretation fails in the clinical setting.
• Penumbral volume can be estimated by DTI combined with stack-based ensemble ML. • Mean diffusivity was the most important feature used for predicting penumbral volume. • The proposed approach can be beneficial for patients with kidney dysfunction.
本研究旨在利用基于堆栈的集成机器学习(ML)方法,通过增强可解释性,比较扩散张量成像(DTI)在识别缺血半暗带(PV)方面的潜力与标准钆增强的灌注-弥散不匹配(PDM)。
16 只雄性大鼠接受大脑中动脉闭塞。在闭塞后 30 分钟和 90 分钟使用 PDM 识别缺血半暗带。我们使用 11 个 DTI 衍生指标和 14 个基于距离的特征来训练 5 个体素 ML 模型。使用基于堆栈的集成技术整合模型预测。通过体积相似性评估、Pearson 相关分析和 Bland-Altman 分析,比较 ML 估计和 PDM 定义的 PV,以评估模型性能。确定特征重要性以实现可解释性。
在测试大鼠中,ML 估计的 PV 中位数为 106.4 mL(四分位距 44.6-157.3 mL),而 PDM 定义的 PV 中位数为 102.0 mL(52.1-144.9 mL)。这些 PV 的体积相似性为 0.88(0.79-0.96),Pearson 相关系数为 0.93(p < 0.001),Bland-Altman 偏差为 2.5 mL(PDM 定义的 PV 平均值的 2.4%),95%一致性区间为-44.9 至 49.9 mL。在用于 PV 预测的特征中,平均弥散度是最重要的特征。
我们的研究证实,使用基于堆栈的集成 ML 方法可以估计 DTI 指标的 PV,结果与标准 PDM 定义的体积相当。该模型的可解释性增强了其临床相关性。需要进一步的人体研究来验证我们的发现。
本研究提出的基于 DTI 的 ML 模型无需使用造影剂即可估计 PV,为肾功能障碍患者提供了一种有价值的选择。如果在临床环境中灌注图解释失败,它也可以作为替代方法。
缺血半暗带可以通过 DTI 结合基于堆栈的集成 ML 来估计。
平均弥散度是用于预测缺血半暗带的最重要特征。
该方法可能对肾功能障碍患者有益。