Peng Kecheng, Cao Xiaoqun, Liu Bainian, Guo Yanan, Xiao Chaohao, Tian Wenlong
College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410000, China.
College of Computer, National University of Defense Technology, Changsha 410000, China.
Entropy (Basel). 2021 Oct 8;23(10):1314. doi: 10.3390/e23101314.
The variation of polar vortex intensity is a significant factor affecting the atmospheric conditions and weather in the Northern Hemisphere (NH) and even the world. However, previous studies on the prediction of polar vortex intensity are insufficient. This paper establishes a deep learning (DL) model for multi-day and long-time intensity prediction of the polar vortex. Focusing on the winter period with the strongest polar vortex intensity, geopotential height (GPH) data of NCEP from 1948 to 2020 at 50 hPa are used to construct the dataset of polar vortex anomaly distribution images and polar vortex intensity time series. Then, we propose a new convolution neural network with long short-term memory based on Gaussian smoothing (GSCNN-LSTM) model which can not only accurately predict the variation characteristics of polar vortex intensity from day to day, but also can produce a skillful forecast for lead times of up to 20 days. Moreover, the innovative GSCNN-LSTM model has better stability and skillful correlation prediction than the traditional and some advanced spatiotemporal sequence prediction models. The accuracy of the model suggests important implications that DL methods have good applicability in forecasting the nonlinear system and vortex spatial-temporal characteristics variation in the atmosphere.
极涡强度的变化是影响北半球乃至全球大气状况和天气的一个重要因素。然而,以往关于极涡强度预测的研究并不充分。本文建立了一个用于极涡多日和长期强度预测的深度学习(DL)模型。针对极涡强度最强的冬季时段,利用1948年至2020年50百帕的美国国家环境预测中心(NCEP)位势高度(GPH)数据构建极涡异常分布图像数据集和极涡强度时间序列。然后,我们提出了一种基于高斯平滑的新型卷积神经网络结合长短期记忆(GSCNN-LSTM)模型,该模型不仅能准确预测极涡强度的逐日变化特征,还能对长达20天的提前期做出有效的预报。此外,创新的GSCNN-LSTM模型比传统的以及一些先进的时空序列预测模型具有更好的稳定性和有效的相关性预测。该模型的准确性表明深度学习方法在预测大气中的非线性系统和涡旋时空特征变化方面具有良好的适用性,这具有重要意义。