Suppr超能文献

MLC-LSTM:利用多层面天气雷达回波的时空相关性进行回波序列外推。

MLC-LSTM: Exploiting the Spatiotemporal Correlation between Multi-Level Weather Radar Echoes for Echo Sequence Extrapolation.

机构信息

College of Meteorology and Oceanography, National University of Defense Technology, 60 Shuanglong Road, Nanjing 211101, China.

出版信息

Sensors (Basel). 2019 Sep 15;19(18):3988. doi: 10.3390/s19183988.

Abstract

Weather radar echo is the data detected by the weather radar sensor and reflects the intensity of meteorological targets. Using the technique of radar echo extrapolation, which is the prediction of future echoes based on historical echo observations, the approaching short-term weather conditions can be forecasted, and warnings can be raised with regard to disastrous weather. Recently, deep learning based extrapolation methods have been proposed and show significant application potential. However, there are two limitations of existing extrapolation methods which should be considered. First, few methods have investigated the impact of the evolutionary process of weather systems on extrapolation accuracy. Second, current deep learning methods usually encounter the problem of blurry echo prediction as extrapolation goes deeper. In this paper, we aim to address the two problems by proposing a Multi-Level Correlation Long Short-Term Memory (MLC-LSTM) and integrate the adversarial training into our approach. The MLC-LSTM can exploit the spatiotemporal correlation between multi-level radar echoes and model their evolution, while the adversarial training can help the model extrapolate realistic and sharp echoes. To train and test our model, we build a real-life multi-level weather radar echoes dataset based on raw CINRAD/SA radar observations provided by the National Meteorological Information Center, China. Extrapolation experiments show that our model can accurately forecast the motion and evolution of an echo while keeping the predicted echo looking realistic and fine-grained. For quantitative evaluation on probability of detection (POD), false alarm rate (FAR), critical success index (CSI), and Heidke skill score (HSS) metrics, our model can reach average scores of 0.6538 POD, 0.2818 FAR, 0.5348 CSI, and 0.6298 HSS, respectively when extrapolating 15 echoes into the future, which outperforms the current state-of-the-art extrapolation methods. Both the qualitative and quantitative experimental results demonstrate the effectiveness of our model, suggesting that it can be effectively applied to operational weather forecasting practice.

摘要

气象雷达回波是气象雷达传感器检测到的数据,反映了气象目标的强度。利用雷达回波外推技术,即根据历史回波观测来预测未来回波,可以预测即将到来的短期天气状况,并对灾害性天气发出警报。最近,基于深度学习的外推方法已经被提出,并显示出了显著的应用潜力。然而,现有外推方法存在两个局限性,应该加以考虑。首先,很少有方法研究天气系统的演化过程对外推精度的影响。其次,当前的深度学习方法在进行深度外推时通常会遇到回波预测模糊的问题。在本文中,我们旨在通过提出一种多层次相关长短时记忆网络(MLC-LSTM)并将对抗训练集成到我们的方法中来解决这两个问题。MLC-LSTM 可以利用多层次雷达回波之间的时空相关性,并对其演化进行建模,而对抗训练可以帮助模型外推出真实而清晰的回波。为了训练和测试我们的模型,我们基于中国国家气象信息中心提供的原始 CINRAD/SA 雷达观测数据构建了一个真实的多层次天气雷达回波数据集。外推实验表明,我们的模型可以准确地预测回波的运动和演化,同时保持预测回波的真实和精细。对于概率检测(POD)、误报率(FAR)、临界成功指数(CSI)和海德克技能评分(HSS)等定量评估指标,当将 15 个回波外推到未来时,我们的模型可以分别达到 0.6538 的 POD、0.2818 的 FAR、0.5348 的 CSI 和 0.6298 的 HSS 的平均得分,优于当前最先进的外推方法。定性和定量实验结果都证明了我们模型的有效性,表明它可以有效地应用于业务天气预报实践。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验