Suppr超能文献

递推 LSTM 在时间序列预测中的应用:在天气预报中的应用。

Transductive LSTM for time-series prediction: An application to weather forecasting.

机构信息

ESAT-STADIUS, Kasteelpark Arenberg 10, 3001 Leuven, Belgium.

ESAT-STADIUS, Kasteelpark Arenberg 10, 3001 Leuven, Belgium.

出版信息

Neural Netw. 2020 May;125:1-9. doi: 10.1016/j.neunet.2019.12.030. Epub 2020 Jan 8.

Abstract

Long Short-Term Memory (LSTM) has shown significant performance on many real-world applications due to its ability to capture long-term dependencies. In this paper, we utilize LSTM to obtain a data-driven forecasting model for an application of weather forecasting. Moreover, we propose Transductive LSTM (T-LSTM) which exploits the local information in time-series prediction. In transductive learning, the samples in the test point vicinity are considered to have higher impact on fitting the model. In this study, a quadratic cost function is considered for the regression problem. Localizing the objective function is done by considering a weighted quadratic cost function at which point the samples in the neighborhood of the test point have larger weights. We investigate two weighting schemes based on the cosine similarity between the training samples and the test point. In order to assess the performance of the proposed method in different weather conditions, the experiments are conducted on two different time periods of a year. The results show that T-LSTM results in better performance in the prediction task.

摘要

长短期记忆网络(LSTM)因其能够捕获长期依赖关系,在许多实际应用中表现出显著的性能。在本文中,我们利用 LSTM 为天气预报应用获取数据驱动的预测模型。此外,我们提出了 Transductive LSTM(T-LSTM),它利用了时间序列预测中的局部信息。在传导学习中,测试点附近的样本被认为对拟合模型有更高的影响。在这项研究中,对于回归问题,考虑了二次代价函数。通过考虑测试点附近样本具有更大权重的加权二次代价函数来局部化目标函数。我们根据训练样本和测试点之间的余弦相似度研究了两种加权方案。为了评估所提出的方法在不同天气条件下的性能,实验在一年中的两个不同时间段进行。结果表明,T-LSTM 在预测任务中表现出更好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验