Suppr超能文献

马来西亚使用SERVQUAL模型和脸书进行的患者满意度与医院护理质量评估

Patient Satisfaction and Hospital Quality of Care Evaluation in Malaysia Using SERVQUAL and Facebook.

作者信息

Rahim Afiq Izzudin A, Ibrahim Mohd Ismail, Musa Kamarul Imran, Chua Sook-Ling, Yaacob Najib Majdi

机构信息

Department of Community Medicine, School of Medical Science, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia.

Faculty of Computing and Informatics, Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia.

出版信息

Healthcare (Basel). 2021 Oct 14;9(10):1369. doi: 10.3390/healthcare9101369.

Abstract

Social media sites, dubbed patient online reviews (POR), have been proposed as new methods for assessing patient satisfaction and monitoring quality of care. However, the unstructured nature of POR data derived from social media creates a number of challenges. The objectives of this research were to identify service quality (SERVQUAL) dimensions automatically from hospital Facebook reviews using a machine learning classifier, and to examine their associations with patient dissatisfaction. From January 2017 to December 2019, empirical research was conducted in which POR were gathered from the official Facebook page of Malaysian public hospitals. To find SERVQUAL dimensions in POR, a machine learning topic classification utilising supervised learning was developed, and this study's objective was established using logistic regression analysis. It was discovered that 73.5% of patients were satisfied with the public hospital service, whereas 26.5% were dissatisfied. SERVQUAL dimensions identified were 13.2% reviews of tangible, 68.9% of reliability, 6.8% of responsiveness, 19.5% of assurance, and 64.3% of empathy. After controlling for hospital variables, all SERVQUAL dimensions except tangible and assurance were shown to be significantly related with patient dissatisfaction (reliability, < 0.001; responsiveness, = 0.016; and empathy, < 0.001). Rural hospitals had a higher probability of patient dissatisfaction ( < 0.001). Therefore, POR, assisted by machine learning technologies, provided a pragmatic and feasible way for capturing patient perceptions of care quality and supplementing conventional patient satisfaction surveys. The findings offer critical information that will assist healthcare authorities in capitalising on POR by monitoring and evaluating the quality of services in real time.

摘要

被称为患者在线评论(POR)的社交媒体网站已被提议作为评估患者满意度和监测医疗质量的新方法。然而,从社交媒体获取的POR数据的非结构化性质带来了一些挑战。本研究的目的是使用机器学习分类器从医院Facebook评论中自动识别服务质量(SERVQUAL)维度,并研究它们与患者不满的关联。2017年1月至2019年12月,进行了实证研究,从马来西亚公立医院的官方Facebook页面收集了POR。为了在POR中找到SERVQUAL维度,开发了一种利用监督学习的机器学习主题分类方法,并使用逻辑回归分析确定了本研究的目标。结果发现,73.5%的患者对公立医院服务满意,而26.5%的患者不满意。识别出的SERVQUAL维度为:有形性方面的评论占13.2%,可靠性方面的评论占68.9%,响应性方面的评论占6.8%,保证性方面的评论占19.5%,移情性方面的评论占64.3%。在控制医院变量后,除有形性和保证性外,所有SERVQUAL维度均与患者不满显著相关(可靠性,<0.001;响应性,=0.016;移情性,<0.001)。农村医院患者不满的可能性更高(<0.001)。因此,在机器学习技术的辅助下,POR为捕捉患者对护理质量的看法和补充传统患者满意度调查提供了一种实用可行的方法。这些发现提供了关键信息,将有助于医疗保健当局通过实时监测和评估服务质量来利用POR。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f19/8544585/3cd226a7a182/healthcare-09-01369-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验