文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

公众对 Twitter 上 COVID-19 大流行的看法:情感分析和主题建模研究。

Public Perception of the COVID-19 Pandemic on Twitter: Sentiment Analysis and Topic Modeling Study.

机构信息

Department of Operations Management, Center of Excellence in Operations and Information Management, Thammasat Business School, Thammasat University, Bangkok, Thailand.

Bangkok Christian Hospital, Bangkok, Thailand.

出版信息

JMIR Public Health Surveill. 2020 Nov 11;6(4):e21978. doi: 10.2196/21978.


DOI:10.2196/21978
PMID:33108310
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7661106/
Abstract

BACKGROUND: COVID-19 is a scientifically and medically novel disease that is not fully understood because it has yet to be consistently and deeply studied. Among the gaps in research on the COVID-19 outbreak, there is a lack of sufficient infoveillance data. OBJECTIVE: The aim of this study was to increase understanding of public awareness of COVID-19 pandemic trends and uncover meaningful themes of concern posted by Twitter users in the English language during the pandemic. METHODS: Data mining was conducted on Twitter to collect a total of 107,990 tweets related to COVID-19 between December 13 and March 9, 2020. The analyses included frequency of keywords, sentiment analysis, and topic modeling to identify and explore discussion topics over time. A natural language processing approach and the latent Dirichlet allocation algorithm were used to identify the most common tweet topics as well as to categorize clusters and identify themes based on the keyword analysis. RESULTS: The results indicate three main aspects of public awareness and concern regarding the COVID-19 pandemic. First, the trend of the spread and symptoms of COVID-19 can be divided into three stages. Second, the results of the sentiment analysis showed that people have a negative outlook toward COVID-19. Third, based on topic modeling, the themes relating to COVID-19 and the outbreak were divided into three categories: the COVID-19 pandemic emergency, how to control COVID-19, and reports on COVID-19. CONCLUSIONS: Sentiment analysis and topic modeling can produce useful information about the trends in the discussion of the COVID-19 pandemic on social media as well as alternative perspectives to investigate the COVID-19 crisis, which has created considerable public awareness. This study shows that Twitter is a good communication channel for understanding both public concern and public awareness about COVID-19. These findings can help health departments communicate information to alleviate specific public concerns about the disease.

摘要

背景:COVID-19 是一种科学和医学上尚未完全了解的新型疾病,因为它尚未得到持续和深入的研究。在 COVID-19 爆发的研究空白中,缺乏足够的 infoveillance 数据。

目的:本研究旨在提高对公众对 COVID-19 大流行趋势的认识,并揭示在大流行期间 Twitter 用户用英语发布的具有重要意义的关注主题。

方法:对 Twitter 进行数据挖掘,以在 2020 年 12 月 13 日至 3 月 9 日期间共收集了 107990 条与 COVID-19 相关的推文。分析包括关键词的频率、情感分析和主题建模,以随时间识别和探索讨论主题。使用自然语言处理方法和潜在狄利克雷分配算法来识别最常见的推文主题,并根据关键词分析对聚类进行分类和识别主题。

结果:结果表明,公众对 COVID-19 大流行有三个主要方面的认识和关注。首先,COVID-19 的传播和症状趋势可以分为三个阶段。其次,情感分析的结果表明,人们对 COVID-19 的前景持负面看法。第三,基于主题建模,与 COVID-19 和爆发相关的主题分为三类:COVID-19 大流行紧急情况、如何控制 COVID-19 以及 COVID-19 报告。

结论:情感分析和主题建模可以从社交媒体上对 COVID-19 大流行讨论的趋势中产生有用的信息,以及从其他角度调查 COVID-19 危机,这引起了公众的极大关注。本研究表明,Twitter 是一个很好的沟通渠道,可以了解公众对 COVID-19 的关注和认识。这些发现可以帮助卫生部门传达信息,以减轻公众对疾病的特定关注。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/b6e797e689e2/publichealth_v6i4e21978_fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/1f9293168387/publichealth_v6i4e21978_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/6c3ba624e5bd/publichealth_v6i4e21978_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/48a392a6f5ff/publichealth_v6i4e21978_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/aa93d60e57f3/publichealth_v6i4e21978_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/eb1294fba4fb/publichealth_v6i4e21978_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/b39fc4db02ec/publichealth_v6i4e21978_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/67e18420b302/publichealth_v6i4e21978_fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/a19fceacc2ed/publichealth_v6i4e21978_fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/8bc2c92cfc41/publichealth_v6i4e21978_fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/eabb7d9336ea/publichealth_v6i4e21978_fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/1446828d2dcd/publichealth_v6i4e21978_fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/0b699a16d8d2/publichealth_v6i4e21978_fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/b6e797e689e2/publichealth_v6i4e21978_fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/1f9293168387/publichealth_v6i4e21978_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/6c3ba624e5bd/publichealth_v6i4e21978_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/48a392a6f5ff/publichealth_v6i4e21978_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/aa93d60e57f3/publichealth_v6i4e21978_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/eb1294fba4fb/publichealth_v6i4e21978_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/b39fc4db02ec/publichealth_v6i4e21978_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/67e18420b302/publichealth_v6i4e21978_fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/a19fceacc2ed/publichealth_v6i4e21978_fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/8bc2c92cfc41/publichealth_v6i4e21978_fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/eabb7d9336ea/publichealth_v6i4e21978_fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/1446828d2dcd/publichealth_v6i4e21978_fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/0b699a16d8d2/publichealth_v6i4e21978_fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/7661106/b6e797e689e2/publichealth_v6i4e21978_fig13.jpg

相似文献

[1]
Public Perception of the COVID-19 Pandemic on Twitter: Sentiment Analysis and Topic Modeling Study.

JMIR Public Health Surveill. 2020-11-11

[2]
Topics, Trends, and Sentiments of Tweets About the COVID-19 Pandemic: Temporal Infoveillance Study.

J Med Internet Res. 2020-10-23

[3]
Top Concerns of Tweeters During the COVID-19 Pandemic: Infoveillance Study.

J Med Internet Res. 2020-4-21

[4]
Twitter Discussions and Emotions About the COVID-19 Pandemic: Machine Learning Approach.

J Med Internet Res. 2020-11-25

[5]
Concerns Expressed by Chinese Social Media Users During the COVID-19 Pandemic: Content Analysis of Sina Weibo Microblogging Data.

J Med Internet Res. 2020-11-26

[6]
Understanding Concerns, Sentiments, and Disparities Among Population Groups During the COVID-19 Pandemic Via Twitter Data Mining: Large-scale Cross-sectional Study.

J Med Internet Res. 2021-3-5

[7]
COVID-19 Vaccine-Related Discussion on Twitter: Topic Modeling and Sentiment Analysis.

J Med Internet Res. 2021-6-29

[8]
Social Media Insights Into US Mental Health During the COVID-19 Pandemic: Longitudinal Analysis of Twitter Data.

J Med Internet Res. 2020-12-14

[9]
Emergency Physician Twitter Use in the COVID-19 Pandemic as a Potential Predictor of Impending Surge: Retrospective Observational Study.

J Med Internet Res. 2021-7-14

[10]
Temporal and Location Variations, and Link Categories for the Dissemination of COVID-19-Related Information on Twitter During the SARS-CoV-2 Outbreak in Europe: Infoveillance Study.

J Med Internet Res. 2020-8-28

引用本文的文献

[1]
BERTopic_Teen: a multi-module optimization approach for short text topic modeling in adolescent health.

Front Public Health. 2025-8-12

[2]
Enhancing Pandemic Prediction: A Deep Learning Approach Using Transformer Neural Networks and Multi-Source Data Fusion for Infectious Disease Forecasting.

medRxiv. 2025-6-24

[3]
How politics affect pandemic forecasting: spatio-temporal early warning capabilities of different geo-social media topics in the context of state-level political leaning.

Front Public Health. 2025-7-1

[4]
Public Discourse Toward Older Drivers in Japan Using Social Media Data From 2010 to 2022: Longitudinal Analysis.

JMIR Infodemiology. 2025-6-16

[5]
Mapping Infodemic Responses: A Geospatial Analysis of COVID-19 Discourse on Twitter in Italy.

Int J Environ Res Public Health. 2025-4-24

[6]
Social media crisis communication and public engagement during COVID-19 analyzing public health and news media organizations' tweeting strategies.

Sci Rep. 2025-5-24

[7]
Impact of the COVID-19 Pandemic and the 2021 National Institute for Health and Care Excellence Guidelines on Public Perspectives Toward Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Thematic and Sentiment Analysis on Twitter (Rebranded as X).

J Med Internet Res. 2025-5-21

[8]
Food Access in New York City During the COVID-19 Pandemic: Social Media Monitoring Study.

JMIR Form Res. 2025-5-9

[9]
COVID-19 Public Health Communication on X (Formerly Twitter): Cross-Sectional Study of Message Type, Sentiment, and Source.

JMIR Form Res. 2025-3-19

[10]
Characterizing Public Sentiments and Drug Interactions in the COVID-19 Pandemic Using Social Media: Natural Language Processing and Network Analysis.

J Med Internet Res. 2025-3-5

本文引用的文献

[1]
Self-reported COVID-19 symptoms on Twitter: an analysis and a research resource.

J Am Med Inform Assoc. 2020-8-1

[2]
Using Reports of Symptoms and Diagnoses on Social Media to Predict COVID-19 Case Counts in Mainland China: Observational Infoveillance Study.

J Med Internet Res. 2020-5-28

[3]
Tracking Social Media Discourse About the COVID-19 Pandemic: Development of a Public Coronavirus Twitter Data Set.

JMIR Public Health Surveill. 2020-5-29

[4]
Global Sentiments Surrounding the COVID-19 Pandemic on Twitter: Analysis of Twitter Trends.

JMIR Public Health Surveill. 2020-5-22

[5]
Measuring the Outreach Efforts of Public Health Authorities and the Public Response on Facebook During the COVID-19 Pandemic in Early 2020: Cross-Country Comparison.

J Med Internet Res. 2020-5-19

[6]
Mining the Characteristics of COVID-19 Patients in China: Analysis of Social Media Posts.

J Med Internet Res. 2020-5-17

[7]
Focus on Mental Health During the Coronavirus (COVID-19) Pandemic: Applying Learnings from the Past Outbreaks.

Cureus. 2020-3-25

[8]
Conversations and Medical News Frames on Twitter: Infodemiological Study on COVID-19 in South Korea.

J Med Internet Res. 2020-5-5

[9]
Chinese Public's Attention to the COVID-19 Epidemic on Social Media: Observational Descriptive Study.

J Med Internet Res. 2020-5-4

[10]
Health Communication Through News Media During the Early Stage of the COVID-19 Outbreak in China: Digital Topic Modeling Approach.

J Med Internet Res. 2020-4-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索