Suppr超能文献

纳米级分辨率下微生物纤维降解过程。

Nanoscale resolution of microbial fiber degradation in action.

机构信息

Department of Biochemistry, University of Zurich, Zurich, Switzerland.

Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.

出版信息

Elife. 2022 May 31;11:e76523. doi: 10.7554/eLife.76523.

Abstract

The lives of microbes unfold at the micron scale, and their molecular machineries operate at the nanoscale. Their study at these resolutions is key toward achieving a better understanding of their ecology. We focus on cellulose degradation of the canonical system to comprehend how microbes build and use their cellulosomal machinery at these nanometer scales. Degradation of cellulose, the most abundant organic polymer on Earth, is instrumental to the global carbon cycle. We reveal that bacterial cells form 'cellulosome capsules' driven by catalytic product-dependent dynamics, which can increase the rate of hydrolysis. Biosynthesis of this energetically costly machinery and cell growth are decoupled at the single-cell level, hinting at a division-of-labor strategy through phenotypic heterogeneity. This novel observation highlights intrapopulation interactions as key to understanding rates of fiber degradation.

摘要

微生物的生命活动在微米尺度展开,其分子机器在纳米尺度运行。在这些分辨率下对它们进行研究是更好地了解其生态的关键。我们专注于典型系统的纤维素降解,以理解微生物如何在这些纳米尺度上构建和使用它们的纤维小体机器。纤维素的降解是地球上最丰富的有机聚合物,对全球碳循环至关重要。我们揭示了细菌细胞通过催化产物依赖的动力学驱动形成“纤维小体胶囊”,这可以提高水解速率。这种能量昂贵的机器的生物合成和细胞生长在单细胞水平上是解耦的,暗示了通过表型异质性实现的劳动分工策略。这一新的观察结果强调了种群内相互作用是理解纤维降解速率的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af21/9191890/e0600383e3b4/elife-76523-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验