Wang Xinyu, Pu Jiahua, Liu Yi, Ba Fang, Cui Mengkui, Li Ke, Xie Yu, Nie Yan, Mi Qixi, Li Tao, Liu Lingli, Zhu Manzhou, Zhong Chao
Division of Materials and Physical Biology, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
Natl Sci Rev. 2019 Oct;6(5):929-943. doi: 10.1093/nsr/nwz104. Epub 2019 Jul 30.
Nanoscale objects feature very large surface-area-to-volume ratios and are now understood as powerful tools for catalysis, but their nature as nanomaterials brings challenges including toxicity and nanomaterial pollution. Immobilization is considered a feasible strategy for addressing these limitations. Here, as a proof-of-concept for the immobilization of nanoscale catalysts in the extracellular matrix of bacterial biofilms, we genetically engineered amyloid monomers of the curli nanofiber system that are secreted and can self-assemble and anchor nano-objects in a spatially precise manner. We demonstrated three scalable, tunable and reusable catalysis systems: biofilm-anchored gold nanoparticles to reduce nitro aromatic compounds such as the pollutant -nitrophenol, biofilm-anchored hybrid CdZnS quantum dots and gold nanoparticles to degrade organic dyes and biofilm-anchored CdSeS@ZnS quantum dots in a semi-artificial photosynthesis system for hydrogen production. Our work demonstrates how the ability of biofilms to grow in scalable and complex spatial arrangements can be exploited for catalytic applications and clearly illustrates the design utility of segregating high-energy nano-objects from injury-prone cellular components by engineering anchoring points in an extracellular matrix.
纳米级物体具有非常大的表面积与体积比,现在被认为是催化的有力工具,但其作为纳米材料的性质带来了包括毒性和纳米材料污染在内的挑战。固定化被认为是解决这些限制的可行策略。在此,作为将纳米级催化剂固定在细菌生物膜细胞外基质中的概念验证,我们对卷曲纳米纤维系统的淀粉样蛋白单体进行了基因工程改造,这些单体被分泌出来,能够以空间精确的方式自组装并锚定纳米物体。我们展示了三种可扩展、可调谐且可重复使用的催化系统:生物膜锚定的金纳米颗粒用于还原硝基芳香化合物,如污染物对硝基苯酚;生物膜锚定的混合CdZnS量子点和金纳米颗粒用于降解有机染料;以及生物膜锚定的CdSeS@ZnS量子点用于半人工光合作用系统制氢。我们的工作展示了如何利用生物膜在可扩展且复杂的空间排列中生长的能力进行催化应用,并清楚地说明了通过在细胞外基质中设计锚定点将高能纳米物体与易受损的细胞成分隔离开来的设计效用。