Hussain Asim, Rafeeq Hamza, Qasim Muhammad, Jabeen Zara, Bilal Muhammad, Franco Marcelo, Iqbal Hafiz M N
Department of Biochemistry, Riphah International University, Faisalabad, Pakistan.
International Islamic University Islamabad, Islamabad, Pakistan.
3 Biotech. 2021 Aug;11(8):365. doi: 10.1007/s13205-021-02913-6. Epub 2021 Jul 5.
Enzyme immobilization is a widely used technology for creating more stable, active, and reusable biocatalysts. The immobilization process also improves the enzyme's operating efficiency in industrial applications. Various support matrices have been designed and developed to enhance the biocatalytic efficiency of immobilized enzymes. Given their unique physicochemical attributes, including substantial surface area, rigidity, semi-conductivity, high enzyme loading, hyper catalytic activity, and size-assisted optical properties, nanomaterials have emerged as fascinating matrices for enzyme immobilization. Tyrosinase is a copper-containing monooxygenase that catalyzes the o-hydroxylation of monophenols to catechols and o-quinones. This enzyme possesses a wide range of uses in the medical, biotechnological, and food sectors. This article summarizes an array of nanostructured materials as carrier matrices for tyrosinase immobilization. Following a detailed background overview, various nanomaterials, as immobilization support matrices, including carbon nanotubes (CNTs), carbon dots (CDs), carbon black (CB), nanofibers, Graphene nanocomposite, platinum nanoparticles, nano-sized magnetic particles, lignin nanoparticles, layered double hydroxide (LDH) nanomaterials, gold nanoparticles (AuNPs), and zinc oxide nanoparticles have been discussed. Next, applied perspectives have been spotlights with particular reference to environmental pollutant sensing, phenolic compounds detection, pharmaceutical, and food industry (e.g., cereal processing, dairy processing, and meat processing), along with other miscellaneous applications.
酶固定化是一种广泛应用的技术,用于制备更稳定、活性更高且可重复使用的生物催化剂。固定化过程还提高了酶在工业应用中的操作效率。人们设计并开发了各种载体基质,以提高固定化酶的生物催化效率。鉴于其独特的物理化学特性,包括高比表面积、刚性、半导电性、高酶负载量、超催化活性和尺寸辅助光学性质,纳米材料已成为用于酶固定化的引人关注的基质。酪氨酸酶是一种含铜单加氧酶,可催化单酚邻位羟基化生成邻苯二酚和邻醌。这种酶在医学、生物技术和食品领域有广泛用途。本文综述了一系列作为酪氨酸酶固定化载体基质的纳米结构材料。在详细介绍背景之后,讨论了各种作为固定化载体基质的纳米材料,包括碳纳米管(CNT)、碳点(CD)、炭黑(CB)、纳米纤维、石墨烯纳米复合材料、铂纳米颗粒、纳米级磁性颗粒、木质素纳米颗粒、层状双氢氧化物(LDH)纳米材料、金纳米颗粒(AuNP)和氧化锌纳米颗粒。接下来,重点介绍了其应用前景,特别是在环境污染物传感、酚类化合物检测、制药和食品工业(如谷物加工、乳制品加工和肉类加工)以及其他各种应用方面。