Suppr超能文献

毒素主导食物链模型的分子博弈论

Molecular game theory for a toxin-dominant food chain model.

作者信息

Li Bowen, Silva Jonathan R, Lu Xiancui, Luo Lei, Wang Yunfei, Xu Lizhen, Aierken Aerziguli, Shynykul Zhanserik, Kamau Peter Muiruri, Luo Anna, Yang Jian, Su Deyuan, Yang Fan, Cui Jianmin, Yang Shilong, Lai Ren

机构信息

Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China.

Department of Biomedical Engineering, Washington University St. Louis, MO 63130, UK.

出版信息

Natl Sci Rev. 2019 Nov;6(6):1191-1200. doi: 10.1093/nsr/nwz097. Epub 2019 Jul 19.

Abstract

Animal toxins that are used to subdue prey and deter predators act as the key drivers in natural food chains and ecosystems. However, the predators of venomous animals may exploit feeding adaptation strategies to overcome toxins their prey produce. Much remains unknown about the genetic and molecular game process in the toxin-dominant food chain model. Here, we show an evolutionary strategy in different trophic levels of scorpion-eating amphibians, scorpions and insects, representing each predation relationship in habitats dominated by the paralytic toxins of scorpions. For scorpions preying on insects, we found that the scorpion α-toxins irreversibly activate the skeletal muscle sodium channel of their prey (insect, BgNa1) through a membrane delivery mechanism and an efficient binding with the Asp/Lys-Tyr motif of BgNa1. However, in the predatory game between frogs and scorpions, with a single point mutation (Lys to Glu) in this motif of the frog's skeletal muscle sodium channel (fNa1.4), fNa1.4 breaks this interaction and diminishes muscular toxicity to the frog; thus, frogs can regularly prey on scorpions without showing paralysis. Interestingly, this molecular strategy also has been employed by some other scorpion-eating amphibians, especially anurans. In contrast to these amphibians, the Asp/Lys-Tyr motifs are structurally and functionally conserved in other animals that do not prey on scorpions. Together, our findings elucidate the protein-protein interacting mechanism of a toxin-dominant predator-prey system, implying the evolutionary game theory at a molecular level.

摘要

用于制服猎物和威慑捕食者的动物毒素是自然食物链和生态系统中的关键驱动因素。然而,有毒动物的捕食者可能会利用进食适应策略来克服其猎物产生的毒素。在毒素主导的食物链模型中,关于遗传和分子博弈过程仍有许多未知之处。在这里,我们展示了以食蝎子的两栖动物、蝎子和昆虫为代表的不同营养级中的一种进化策略,它们分别代表了由蝎子麻痹性毒素主导的栖息地中的每种捕食关系。对于捕食昆虫的蝎子,我们发现蝎子α毒素通过膜递送机制并与昆虫(BgNa1)的Asp/Lys-Tyr基序有效结合,不可逆地激活其猎物的骨骼肌钠通道。然而,在青蛙和蝎子之间的捕食博弈中,青蛙骨骼肌钠通道(fNa1.4)的这个基序发生单点突变(Lys突变为Glu)后,fNa1.4打破了这种相互作用并降低了对青蛙的肌肉毒性;因此,青蛙可以正常捕食蝎子而不会出现麻痹。有趣的是,这种分子策略也被其他一些食蝎子的两栖动物所采用,尤其是无尾目动物。与这些两栖动物不同,Asp/Lys-Tyr基序在其他不捕食蝎子的动物中在结构和功能上是保守的。总之,我们的发现阐明了毒素主导的捕食者 - 猎物系统的蛋白质 - 蛋白质相互作用机制,暗示了分子水平上的进化博弈论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d9c/8291550/44192030fb46/nwz097fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验