Suppr超能文献

用太赫兹近场成像揭示连续谱中束缚态的对称性保护

Unveiling the Symmetry Protection of Bound States in the Continuum with Terahertz Near-Field Imaging.

作者信息

van Hoof Niels J J, Abujetas Diego R, Ter Huurne Stan E T, Verdelli Francesco, Timmermans Giel C A, Sánchez-Gil José A, Rivas Jaime Gómez

机构信息

Institute for Photonic Integration, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600, MB, The Netherlands.

Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Científicas, Serrano 121, Madrid 28006, Spain.

出版信息

ACS Photonics. 2021 Oct 20;8(10):3010-3016. doi: 10.1021/acsphotonics.1c00937. Epub 2021 Sep 20.

Abstract

Bound states in the continuum (BICs) represent a new paradigm in photonics due to the full suppression of radiation losses. However, this suppression has also hampered the direct observation of them. By using a double terahertz (THz) near-field technique that allows the local excitation and detection of the THz amplitude, we are able to map for the first time the electromagnetic field amplitude and phase of BICs over extended areas, unveiling the field-symmetry protection that suppresses the far-field radiation. This investigation, done for metasurfaces of dimer scatterers, reveals the in-plane extension and formation of BICs with antisymmetric phases, in agreement with coupled-dipole calculations. By displacing the scatterers, we show experimentally that a mirror symmetry is not a necessary condition for a BIC formation. Only π-rotation symmetry is required, making BICs exceptionally robust to structural changes. This work makes the local field of BICs experimentally accessible, which is crucial for the engineering of cavities with infinite lifetimes.

摘要

连续域束缚态(BICs)由于完全抑制了辐射损耗,代表了光子学中的一种新范式。然而,这种抑制也阻碍了对它们的直接观测。通过使用一种双太赫兹(THz)近场技术,该技术允许对太赫兹振幅进行局部激发和检测,我们首次能够在扩展区域绘制出BICs的电磁场振幅和相位,揭示了抑制远场辐射的场对称性保护。这项针对二聚体散射体超表面进行的研究,揭示了具有反对称相位的BICs的面内扩展和形成,这与耦合偶极子计算结果一致。通过移动散射体,我们通过实验表明镜面对称性不是BIC形成的必要条件。只需要π旋转对称性,这使得BICs对结构变化具有极强的鲁棒性。这项工作使BICs的局部场在实验上变得可及,这对于设计具有无限寿命的腔至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f9/8532159/cb98a6e37321/ph1c00937_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验