Suppr超能文献

基于双钕磁体的微流控分离装置的可调谐流体动力学聚焦

Tunable hydrodynamic focusing with dual-neodymium magnet-based microfluidic separation device.

作者信息

Al-Zareer Maan

机构信息

Department of Mechanical and Industrial Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G8, Canada.

出版信息

Med Biol Eng Comput. 2022 Jan;60(1):47-60. doi: 10.1007/s11517-021-02438-3. Epub 2021 Oct 25.

Abstract

Microfluidic separation technologies are the focus of various biological applications, such as disease diagnostics, single-cell analysis, and therapeutics. Different methods and devices were proposed in the micro-separation field, focusing on minimizing the chemical deformation and physical damage to the particles throughout the separation process; however, it is still a challenge. This paper proposes a hydrodynamic focusing-based microfluidic separation device equipped with a dual-neodymium magnet for positive magnetophoretic microparticles and cell separation. Hydrodynamic focusing is used to help to sort the particles and minimize the damage to the microparticles through the proposed different inlet flow rates between the two focusing channels. The dual magnets help to separate the particles in two stages. The system's novelty is integrating the hydrodynamic focusing with the dual magnetics system, where the hydrodynamic focusing is with variable inlet flow rates. The performance of the proposed microfluidic particle separator is numerically assessed under various operating parameters, including the concentration of the particle in the injected solution and flow rate ratios of high to the low focusing flows on the efficiency of the separation. Following the proposed separation method, it was possible to separate the 16 and 10 [Formula: see text] microparticles with the first-round efficiency of 21% with a quality of 92%, respectively. The developed particle separation system can significantly broaden its applications in a variety of biomedical research studies.

摘要

微流控分离技术是各种生物应用的焦点,如疾病诊断、单细胞分析和治疗。在微分离领域提出了不同的方法和装置,重点是在整个分离过程中尽量减少对颗粒的化学变形和物理损伤;然而,这仍然是一个挑战。本文提出了一种基于流体动力聚焦的微流控分离装置,该装置配备了用于正磁泳微粒和细胞分离的双钕磁体。流体动力聚焦用于帮助分选颗粒,并通过在两个聚焦通道之间提出的不同入口流速来尽量减少对微粒的损伤。双磁体有助于分两个阶段分离颗粒。该系统的新颖之处在于将流体动力聚焦与双磁体系统相结合,其中流体动力聚焦具有可变的入口流速。在所提出的微流控颗粒分离器的性能在各种操作参数下进行了数值评估,包括注入溶液中颗粒的浓度以及高聚焦流与低聚焦流的流速比,以评估分离效率。按照所提出的分离方法,有可能分别以21%的首轮效率和92%的质量分离16和10 [公式:见文本] 的微粒。所开发的颗粒分离系统可以显著拓宽其在各种生物医学研究中的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验