Suppr超能文献

基于小波的学习模型增强胰腺导管腺癌的分子预后。

A Wavelet-Based Learning Model Enhances Molecular Prognosis in Pancreatic Adenocarcinoma.

机构信息

Epigenetics & Function Group, Hohai University, Jiangsu 213022, China.

出版信息

Biomed Res Int. 2021 Oct 16;2021:7865856. doi: 10.1155/2021/7865856. eCollection 2021.

Abstract

Genome-wide omics technology boosts deep interrogation into the clinical prognosis and inherent mechanism of pancreatic oncology. Classic LASSO methods coequally treat all candidates, ignoring individual characteristics, thus frequently deteriorating performance with comparatively more predictors. Here, we propose a wavelet-based deep learning method in variable selection and prognosis formulation for PAAD with small samples and multisource information. With the genomic, epigenomic, and clinical cohort information from The Cancer Genome Atlas, the constructed five-molecule model is validated via Kaplan-Meier survival estimate, rendering significant prognosis capability on high- and low-risk subcohorts ( value < 0.0001), together with three predictors manifesting the individual prognosis significance ( value: 0.0012~0.024). Moreover, the performance of the prognosis model has been benchmarked against the traditional LASSO and wavelet-based methods in the 3- and 5-year prediction AUC items, respectively. Specifically, the proposed model with discrete stationary wavelet base (bior1.5) overwhelmingly outperformed traditional LASSO and wavelet-based methods (AUC: 0.787 vs. 0.782 and 0.721 for the 3-year case; AUC: 0.937 vs. 0.802 and 0.859 for the 5-year case). Thus, the proposed model provides a more accurate perspective, but with less predictor burden for clinical prognosis in the pancreatic carcinoma study.

摘要

基于基因组的组学技术深入探究了胰腺癌的临床预后和内在机制。经典的 LASSO 方法平等对待所有候选者,忽略了个体特征,因此在预测变量较多时性能常常会恶化。在这里,我们提出了一种基于小波的深度学习方法,用于处理样本量小且具有多源信息的胰腺癌的变量选择和预后建模。利用来自癌症基因组图谱的基因组、表观基因组和临床队列信息,通过 Kaplan-Meier 生存估计验证了所构建的五分子模型,该模型在高风险和低风险亚组中具有显著的预后能力( value < 0.0001),同时三个预测因子表现出个体预后的显著意义( value:0.0012~0.024)。此外,还将预后模型的性能与传统的 LASSO 和基于小波的方法在 3 年和 5 年预测 AUC 项目中进行了基准测试。具体而言,具有离散平稳小波基(bior1.5)的建议模型在传统 LASSO 和基于小波的方法中表现出色(3 年时 AUC:0.787 对 0.782 和 0.721;5 年时 AUC:0.937 对 0.802 和 0.859)。因此,该模型为胰腺癌研究中的临床预后提供了更准确的视角,但预测变量的负担更小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcf5/8541860/8d22caba4eb6/BMRI2021-7865856.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验