Suppr超能文献

一种基于加权保真度和正则化的方法,用于去除图上图像的混合噪声或未知噪声。

A Weighted Fidelity and Regularization-Based Method for Mixed or Unknown Noise Removal from Images on Graphs.

作者信息

Wang Cong, Yan Ziyue, Pedrycz Witold, Zhou Mengchu, Li Zhiwu

出版信息

IEEE Trans Image Process. 2020 Feb 25. doi: 10.1109/TIP.2020.2969076.

Abstract

Image denoising technologies in a Euclidean domain have achieved good results and are becoming mature. However, in recent years, many real-world applications encountered in computer vision and geometric modeling involve image data defined in irregular domains modeled by huge graphs, which results in the problem on how to solve image denoising problems defined on graphs. In this paper, we propose a novel model for removing mixed or unknown noise in images on graphs. The objective is to minimize the sum of a weighted fidelity term and a sparse regularization term that additionally utilizes wavelet frame transform on graphs to retain feature details of images defined on graphs. Specifically, the weighted fidelity term with ℓ1-norm and ℓ2-norm is designed based on a analysis of the distribution of mixed noise. The augmented Lagrangian and accelerated proximal gradient methods are employed to achieve the optimal solution to the problem. Finally, some supporting numerical results and comparative analyses with other denoising algorithms are provided. It is noted that we investigate image denoising with unknown noise or a wide range of mixed noise, especially the mixture of Poisson, Gaussian, and impulse noise. Experimental results reported for synthetic and real images on graphs demonstrate that the proposed method is effective and efficient, and exhibits better performance for the removal of mixed or unknown noise in images on graphs than other denoising algorithms in the literature. The method can effectively remove mixed or unknown noise and retain feature details of images on graphs. It delivers a new avenue for denoising images in irregular domains.

摘要

欧几里得域中的图像去噪技术已经取得了良好的效果并且日趋成熟。然而,近年来,计算机视觉和几何建模中遇到的许多实际应用涉及由巨大图形建模的不规则域中定义的图像数据,这就产生了如何解决在图形上定义的图像去噪问题。在本文中,我们提出了一种用于去除图形上图像中混合或未知噪声的新模型。目标是最小化加权保真项和稀疏正则化项的总和,该稀疏正则化项额外利用图形上的小波框架变换来保留图形上定义的图像的特征细节。具体而言,基于对混合噪声分布的分析,设计了具有ℓ1范数和ℓ2范数的加权保真项。采用增广拉格朗日方法和加速近端梯度方法来实现该问题的最优解。最后,提供了一些支持性的数值结果以及与其他去噪算法的对比分析。需要注意的是,我们研究的是具有未知噪声或广泛混合噪声的图像去噪,特别是泊松噪声、高斯噪声和脉冲噪声的混合。针对图形上的合成图像和真实图像报告的实验结果表明,所提出的方法是有效且高效的,并且在去除图形上图像中的混合或未知噪声方面比文献中的其他去噪算法表现出更好的性能。该方法可以有效地去除混合或未知噪声并保留图形上图像的特征细节。它为不规则域中的图像去噪提供了一条新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验