Hudry Damien, De Backer Annick, Popescu Radian, Busko Dmitry, Howard Ian A, Bals Sara, Zhang Yang, Pedrazo-Tardajos Adrian, Van Aert Sandra, Gerthsen Dagmar, Altantzis Thomas, Richards Bryce S
Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium.
Small. 2021 Nov;17(47):e2104441. doi: 10.1002/smll.202104441. Epub 2021 Oct 25.
Advances in controlling energy migration pathways in core-shell lanthanide (Ln)-based hetero-nanocrystals (HNCs) have relied heavily on assumptions about how optically active centers are distributed within individual HNCs. In this article, it is demonstrated that different types of interface patterns can be formed depending on shell growth conditions. Such interface patterns are not only identified but also characterized with spatial resolution ranging from the nanometer- to the atomic-scale. In the most favorable cases, atomic-scale resolved maps of individual particles are obtained. It is also demonstrated that, for the same type of core-shell architecture, the interface pattern can be engineered with thicknesses of just 1 nm up to several tens of nanometers. Total alloying between the core and shell domains is also possible when using ultra-small particles as seeds. Finally, with different types of interface patterns (same architecture and chemical composition of the core and shell domains) it is possible to modify the output color (yellow, red, and green-yellow) or change (improvement or degradation) the absolute upconversion quantum yield. The results presented in this article introduce an important paradigm shift and pave the way toward the emergence of a new generation of core-shell Ln-based HNCs with better control over their atomic-scale organization.
在控制核壳型镧系(Ln)基异质纳米晶体(HNCs)中的能量迁移途径方面取得的进展,在很大程度上依赖于关于光学活性中心如何在单个HNCs内分布的假设。在本文中,证明了根据壳层生长条件可以形成不同类型的界面图案。不仅识别出了这些界面图案,还以从纳米尺度到原子尺度的空间分辨率对其进行了表征。在最有利的情况下,获得了单个粒子的原子尺度分辨图。还证明了,对于同一类型的核壳结构,可以设计仅1纳米至几十纳米厚度的界面图案。当使用超小粒子作为晶种时,核域和壳域之间也可能实现完全合金化。最后,通过不同类型的界面图案(核域和壳域具有相同的结构和化学成分),可以改变输出颜色(黄色、红色和绿黄色)或改变(提高或降低)绝对上转换量子产率。本文给出的结果引入了一个重要的范式转变,并为新一代能够更好地控制其原子尺度组织的核壳型Ln基HNCs的出现铺平了道路。