Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.
Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America.
PLoS Biol. 2020 Dec 28;18(12):e3001051. doi: 10.1371/journal.pbio.3001051. eCollection 2020 Dec.
Coordination of cell growth is essential for the development of the brain, but the molecular mechanisms underlying the regulation of glial and neuronal size are poorly understood. To investigate the mechanisms involved in glial size regulation, we used Caenorhabditis elegans amphid sheath (AMsh) glia as a model and show that a conserved cis-Golgi membrane protein eas-1/GOLT1B negatively regulates glial growth. We found that eas-1 inhibits a conserved E3 ubiquitin ligase rnf-145/RNF145, which, in turn, promotes nuclear activation of sbp-1/ SREBP, a key regulator of sterol and fatty acid synthesis, to restrict cell growth. At early developmental stages, rnf-145 in the cis-Golgi network inhibits sbp-1 activation to promote the growth of glia, and when animals reach the adult stage, this inhibition is released through an eas-1-dependent shuttling of rnf-145 from the cis-Golgi to the trans-Golgi network to stop glial growth. Furthermore, we identified long-chain polyunsaturated fatty acids (LC-PUFAs), especially eicosapentaenoic acid (EPA), as downstream products of the eas-1-rnf-145-sbp-1 pathway that functions to prevent the overgrowth of glia. Together, our findings reveal a novel and potentially conserved mechanism underlying glial size control.
细胞生长的协调对于大脑的发育至关重要,但调控神经胶质和神经元大小的分子机制还知之甚少。为了研究参与神经胶质大小调控的机制,我们使用秀丽隐杆线虫的触角鞘(AMsh)神经胶质作为模型,并表明保守的顺式高尔基体膜蛋白 eas-1/GOLT1B 负调控神经胶质的生长。我们发现 eas-1 抑制了保守的 E3 泛素连接酶 rnf-145/RNF145,而 rnf-145 又促进了固醇和脂肪酸合成的关键调节因子 sbp-1/SREBP 的核激活,从而限制细胞生长。在早期发育阶段,顺式高尔基体网络中的 rnf-145 抑制 sbp-1 的激活,以促进神经胶质的生长,而当动物进入成年期时,这种抑制通过 eas-1 依赖性的 rnf-145 从顺式高尔基体到反式高尔基体网络的穿梭而释放,从而停止神经胶质的生长。此外,我们鉴定出长链多不饱和脂肪酸(LC-PUFAs),特别是二十碳五烯酸(EPA),作为 eas-1-rnf-145-sbp-1 途径的下游产物,该途径的功能是防止神经胶质过度生长。总之,我们的发现揭示了一种新的、潜在的保守的神经胶质大小控制机制。