Biological Data Science Institute, The Australian National University, Canberra, Australia.
Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, Australia.
Mol Plant Microbe Interact. 2022 Feb;35(2):146-156. doi: 10.1094/MPMI-08-21-0201-R. Epub 2022 Feb 1.
Many fungi and oomycete species are devasting plant pathogens. These eukaryotic filamentous pathogens secrete effector proteins to facilitate plant infection. Fungi and oomycete pathogens have diverse infection strategies and their effectors generally do not share sequence homology. However, they occupy similar host environments, either the plant apoplast or plant cytoplasm, and, therefore, may share some unifying properties based on the requirements of these host compartments. Here, we exploit these biological signals and present the first classifier (EffectorP 3.0) that uses two machine-learning models: one trained on apoplastic effectors and one trained on cytoplasmic effectors. EffectorP 3.0 accurately predicts known apoplastic and cytoplasmic effectors in fungal and oomycete secretomes with low estimated false-positive rates of 3 and 8%, respectively. Cytoplasmic effectors have a higher proportion of positively charged amino acids, whereas apoplastic effectors are enriched for cysteine residues. The combination of fungal and oomycete effectors in training leads to a higher number of predicted cytoplasmic effectors in biotrophic fungi. EffectorP 3.0 expands predicted effector repertoires beyond small, cysteine-rich secreted proteins in fungi and RxLR-motif containing secreted proteins in oomycetes. We show that signal peptide prediction is essential for accurate effector prediction, because EffectorP 3.0 recognizes a cytoplasmic signal also in intracellular, nonsecreted proteins.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
许多真菌和卵菌物种是破坏性的植物病原体。这些真核丝状病原体分泌效应蛋白以促进植物感染。真菌和卵菌病原体具有不同的感染策略,它们的效应蛋白通常没有序列同源性。然而,它们占据了相似的宿主环境,无论是植物质外体还是植物细胞质,因此,根据这些宿主区室的要求,可能具有一些统一的特性。在这里,我们利用这些生物信号,展示了第一个分类器(EffectorP 3.0),它使用两个机器学习模型:一个在质外体效应物上训练,一个在细胞质效应物上训练。EffectorP 3.0 可以准确地预测真菌和卵菌分泌组中已知的质外体和细胞质效应物,估计的假阳性率分别为 3%和 8%。细胞质效应物具有更高比例的带正电荷的氨基酸,而质外体效应物富含半胱氨酸残基。在训练中结合真菌和卵菌效应物会导致生物营养真菌中预测的细胞质效应物数量增加。EffectorP 3.0 扩展了预测的效应子库,超出了真菌中小的富含半胱氨酸的分泌蛋白和卵菌中含有 RxLR 基序的分泌蛋白。我们表明,信号肽预测对于准确的效应子预测至关重要,因为 EffectorP 3.0 还可以识别细胞质中的信号肽,即使是在细胞内的非分泌蛋白中也是如此。