Suppr超能文献

靶向晚期 L 型钙电流抑制室性心律失常。

Suppression of ventricular arrhythmias by targeting late L-type Ca2+ current.

机构信息

Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.

Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.

出版信息

J Gen Physiol. 2021 Dec 6;153(12). doi: 10.1085/jgp.202012584. Epub 2021 Oct 26.

Abstract

Ventricular arrhythmias, a leading cause of sudden cardiac death, can be triggered by cardiomyocyte early afterdepolarizations (EADs). EADs can result from an abnormal late activation of L-type Ca2+ channels (LTCCs). Current LTCC blockers (class IV antiarrhythmics), while effective at suppressing EADs, block both early and late components of ICa,L, compromising inotropy. However, computational studies have recently demonstrated that selective reduction of late ICa,L (Ca2+ influx during late phases of the action potential) is sufficient to potently suppress EADs, suggesting that effective antiarrhythmic action can be achieved without blocking the early peak ICa,L, which is essential for proper excitation-contraction coupling. We tested this new strategy using a purine analogue, roscovitine, which reduces late ICa,L with minimal effect on peak current. Scaling our investigation from a human CaV1.2 channel clone to rabbit ventricular myocytes and rat and rabbit perfused hearts, we demonstrate that (1) roscovitine selectively reduces ICa,L noninactivating component in a human CaV1.2 channel clone and in ventricular myocytes native current, (2) the pharmacological reduction of late ICa,L suppresses EADs and EATs (early after Ca2+ transients) induced by oxidative stress and hypokalemia in isolated myocytes, largely preserving cell shortening and normal Ca2+ transient, and (3) late ICa,L reduction prevents/suppresses ventricular tachycardia/fibrillation in ex vivo rabbit and rat hearts subjected to hypokalemia and/or oxidative stress. These results support the value of an antiarrhythmic strategy based on the selective reduction of late ICa,L to suppress EAD-mediated arrhythmias. Antiarrhythmic therapies based on this idea would modify the gating properties of CaV1.2 channels rather than blocking their pore, largely preserving contractility.

摘要

室性心律失常是心脏性猝死的主要原因,可由心肌细胞早期后除极(EAD)触发。EAD 可由 L 型钙通道(LTCC)晚期异常激活引起。目前的 LTCC 阻滞剂(IV 类抗心律失常药)虽然有效抑制 EAD,但同时阻断 ICa,L 的早、晚期成分,损害心肌收缩力。然而,最近的计算研究表明,选择性减少晚期 ICa,L(动作电位晚期的钙内流)足以有效抑制 EAD,这表明无需阻断早期峰值 ICa,L 也能实现有效的抗心律失常作用,而早期峰值 ICa,L 对于适当的兴奋-收缩偶联是必需的。我们使用嘌呤类似物罗司维亭来测试这种新策略,它对晚期 ICa,L 的抑制作用最小,对峰值电流的影响最小。从人类 CaV1.2 通道克隆到兔心室肌细胞和大鼠、兔灌流心脏,我们对该策略进行了研究,结果表明:(1)罗司维亭选择性地减少人类 CaV1.2 通道克隆和心室肌细胞天然电流中的 ICa,L 非失活成分;(2)晚期 ICa,L 的药理学抑制作用可抑制氧化应激和低钾血症诱导的分离心肌细胞中的 EAD 和 EAT(早期钙瞬变后除极),在很大程度上保留细胞缩短和正常钙瞬变;(3)晚期 ICa,L 的减少可预防/抑制低钾血症和/或氧化应激引起的离体兔和大鼠心脏的室性心动过速/颤动。这些结果支持基于选择性减少晚期 ICa,L 来抑制 EAD 介导的心律失常的抗心律失常策略的价值。基于这一理念的抗心律失常疗法将改变 CaV1.2 通道的门控特性,而不是阻断其孔道,在很大程度上保留收缩性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dd5/8552156/4b6dd4d647ed/JGP_202012584_Fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验