Suppr超能文献

基于多模态步态分析的抑郁风险检测系统。

A Multi-Modal Gait Analysis-Based Detection System of the Risk of Depression.

出版信息

IEEE J Biomed Health Inform. 2022 Oct;26(10):4859-4868. doi: 10.1109/JBHI.2021.3122299. Epub 2022 Oct 4.

Abstract

Currently, depression has become a common mental disorder, especially among postgraduates. It is reported that postgraduates have a higher risk of depression than the general public, and they are more sensitive to contact with others. Thus, a non-contact and effective method for detecting people at risk of depression becomes an urgent demand. In order to make the recognition of depression more reliable and convenient, we propose a multi-modal gait analysis-based depression detection method that combines skeleton modality and silhouette modality. Firstly, we propose a skeleton feature set to describe depression and train a Long Short-Term Memory (LSTM) model to conduct sequence strategy. Secondly, we generate Gait Energy Image (GEI) as silhouette features from RGB videos, and design two Convolutional Neural Network (CNN) models with a new loss function to extract silhouette features from front and side perspectives. Then, we construct a multi-modal fusion model consisting of fusing silhouettes from the front and side views at the feature level and the classification results of different modalities at the decision level. The proposed multi-modal model achieved accuracy at 85.45% in the dataset consisting of 200 postgraduate students (including 86 depressive ones), 5.17% higher than the best single-mode model. The multi-modal method also shows improved generalization by reducing the gender differences. Furthermore, we design a vivid 3D visualization of the gait skeletons, and our results imply that gait is a potent biometric for depression detection.

摘要

目前,抑郁症已成为一种常见的精神障碍,尤其是在研究生群体中。据报道,研究生患抑郁症的风险比一般公众更高,而且他们对与他人的接触更为敏感。因此,一种非接触且有效的检测抑郁症高危人群的方法成为迫切需求。为了使抑郁症的识别更可靠、更便捷,我们提出了一种基于多模态步态分析的抑郁症检测方法,结合了骨骼模态和轮廓模态。首先,我们提出了一个骨骼特征集来描述抑郁症,并训练一个长短期记忆(LSTM)模型进行序列策略。其次,我们从 RGB 视频生成步态能量图像(GEI)作为轮廓特征,并设计了两个带有新损失函数的卷积神经网络(CNN)模型,从正面和侧面视角提取轮廓特征。然后,我们构建了一个多模态融合模型,包括在特征级融合正面和侧面轮廓,以及在决策级融合不同模态的分类结果。在由 200 名研究生(包括 86 名抑郁症患者)组成的数据集上,所提出的多模态模型的准确率达到 85.45%,比最佳单模态模型高 5.17%。该多模态方法还通过减少性别差异提高了泛化能力。此外,我们设计了一个生动的步态骨骼 3D 可视化,我们的结果表明步态是检测抑郁症的有力生物特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验